
aiCache, Inc.

www.aiCache.com

Version 6.x

aiCache V6 User Guide

 At aiCache, we take pride in positive environmental impact of our technology. Millions fewer

tons of pollutants enter Earthôs atmosphere due to tremendous reduction of server footprint,

made possible by our product.

Please consider taking this one step further and do not print this Guide out. Keep it in

electronic form instead. It is easy to use, easy to search and it always stays up to date at

http://aicache.com/pdf/adminguide.pdf . Thank you !

http://aicache.com/pdf/adminguide.pdf

aiCache V 6.291

 User Guide
www.aiCache.com

1

Get your life backÊ
É 2001-2013 aiCache, Inc .

Table of Contents.

Table of Contents. ... 1

aiCache End User License Agreement. ... 14

Introduction to aiCache. ... 16

Typical web site setup overview. .. 16

Common challenges experienced by web sites with heavy traffic. .. 17

aiCache to the rescue. .. 19

aiCache features at a glance. .. 20

Document Conventions... 22

Key new features in aiCache V6. .. 23

Example Web Site. .. 24

Prerequisites. ... 25

Understanding your Web Setup. .. 25

Server Platform. ... 25

Operating Systems and Software Pre-requisites. ... 26

Red Hat 5, Fedora 8 & derivatives warning. ... 27

Installation. ... 28

Network Setup .. 28

aiCache distribution file. ... 28

aiCache binaries. .. 28

Installation. ... 29

Production License File. .. 29

Configuring aiCache: look Ma, no XML ! .. 32

aiCache V 6.291

 User Guide
www.aiCache.com

2

Get your life backÊ
É 2001-2013 aiCache, Inc .

Configuration File Sections. .. 32

Configuration line format. .. 34

Simple, exact and regular expression patterns. .. 35

Pattern testing tool. .. 37

URL match actions. ... 37

Example configuration file. ... 38

Server/global section. ... 46

Global (system-wide) settings. .. 46

Website-specific settings. ... 54

Pattern settings. .. 60

Listen Ports. .. 66

Network performance and scalability considerations. ... 67

CLI Server. ... 68

aiCache handling of requests and responses, enforcing timeouts. .. 69

aiCache and large requests and/or response. .. 69

Origin Servers. ... 70

Configuring Origin Servers. .. 70

Load Balancing Metrics: round-robin, least connections and weighted. ... 71

aiCache processing of origin servers specified via DNS names. ... 72

Monitoring Health of origin Servers.. 73

Monitoring Health of aiCache Servers. ... 75

Cacheable vs. non-cacheable content, why very large TTLs are not always a good thing and

auxiliary content versioning. .. 75

It just keeps getting better: aiCache benefits with non-cacheable content. 77

aiCache processing of cacheable content. ... 78

First-Fill. .. 78

aiCache V 6.291

 User Guide
www.aiCache.com

3

Get your life backÊ
É 2001-2013 aiCache, Inc .

Refresh. .. 78

Handling of non-200 origin server responses to cacheable requests. .. 79

About 401, 407 responses . .. 79

Best practices to maximize benefits of caching. .. 80

aiCache handling of conditional HTTP requests. ... 82

Enabling forwarding and processing of Etag validators for cacheable responses. 83

Overriding pattern TTL based on response header value. .. 83

TTL -bending when under heavy load.. 84

Watch-folder, file-driven content expiration. ... 85

Preventing caching of responses. .. 86

URL rewriting and rewrite -redirection. .. 87

Decimated rewriting. ... 89

URL escaping. .. 89

Support for intelligent handling of mobile and desktop versions of the websites. 91

Supporting desktop and mobile versions of web sites. ... 91

Reliable detection of mobile devices. .. 91

Deploying device detection logic. ... 92

Having a strategy for handling of search bots/spiders. .. 92

Supporting different URL structure. .. 92

Supporting unified mobile/desktop site. .. 93

Letting users have a choice. ... 94

aiCacheôs method and apparatus of supporting device-specific seamless and transparent content

selection, caching and filling . .. 94

Different sites (www.acme.com and m.acme.com), different URL structure. 96

Different sites (www.acme.com and m.acme.com), same URL structure. ... 98

Same site (www.acme.com), same URL structure, same origin servers. .. 98

aiCache V 6.291

 User Guide
www.aiCache.com

4

Get your life backÊ
É 2001-2013 aiCache, Inc .

Same site (www.acme.com), different URL structure, different origins. .. 99

Same site (www.acme.com), same URL structure, different origins. ... 100

Overriding TTL, OS Tag and Host header based on UA tag. ... 100

Dropping requests based on UA tag. ... 100

Simplify UA tagging with default tag. .. 101

Letting users have a choice. ... 101

Modifying UA tag patterns and file content. ... 101

[Deprecated] UA-driven URL rewriting and rewrite -redirection. ... 102

Rewriting request's Host header. ... 103

Host-header-driven URL rewriting 104

Support for Geo-driven processing of requests. .. 106

Introduction to basics of Geo-targeting. .. 106

Geo-locating the requesting user. ... 106

Geo Database. ... 106

Configuring aiCache Geo-processing. ... 107

Overriding TTL and OS Tag based on Geo tag. .. 109

Dropping requests based on Geo tag. .. 109

Modifying requestôs cache signature using geo-tag. ... 110

Geo and mobile tag processing order . .. 110

Testing Geo-processing 110

Configuring Client -to-Origin Server Persistence. .. 111

Assuring OS persistence in mixed HTTP/HTTPS setups. ... 112

Origin Server tagging - selecting origin servers based on request's URL. 114

Origin Server of last-resort. .. 115

Cookie-driven Caching Control. .. 116

Content-driven Caching Control. ... 117

aiCache V 6.291

 User Guide
www.aiCache.com

5

Get your life backÊ
É 2001-2013 aiCache, Inc .

Content-driven request fallback or retry control. .. 119

URL-triggered Cache Freshness Control. ... 121

Allowing Cookie pass-through for cacheable responses. ... 121

Signatures of cached responses. .. 122

Unifying cached content for different websites. ... 123

Adding a Cookie value to signature of cacheable responses. .. 124

Adding User-Agent request header to signature of cacheable responses. 125

Adding reduced/rewritten User-Agent request header to signature of cacheable responses. 125

Forwarding User-Agent header to origin servers, for cacheable requests. 127

Adding Accept-Language request header to signature of cacheable responses. 128

Adding value of arbitrary request header to signature of cacheable responses. 129

Response-driven Cache Invalidation. [cluster/peer enabled] ... 129

Session-driven content caching. [cluster/peer enabled] .. 130

Handling and storing of compressed (gzipped) and plain responses. ... 134

On-the-fly Response Compression. .. 134

Compression and IE6 (Internet Explorer v6). .. 135

Forwarding cache control headers as received from origin servers. .. 137

Handling of certain response headers with body-less responses. .. 137

Handling of POST requests with Expect header. ... 137

De-chunking of request and response bodies. ... 138

Cache size management via cache cleaner process. ... 138

Cache size management via cache cleaner process. ... 138

Cache size management via Cache-by-Path Feature. .. 139

Cache size management via query parameter busting. .. 141

Cache size management via ignore case feature. ... 142

Caching of responses to POST requests. ... 143

aiCache V 6.291

 User Guide
www.aiCache.com

6

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache response preload (pre-fetch) feature. .. 144

aiCache request retry logic. .. 145

Forcing retry (refresh) by response header or response size check. .. 146

Modification/insertion of HTTP Via header. .. 147

Adding HTTP response headers. .. 147

Dealing with malformed 3xx responses from Origin Servers. ... 148

Diagnosing request and response cookies. ... 148

Diagnosing bad responses. .. 150

Disallowing downstream caching of responses. .. 150

Forwarding Client IP address information to origin servers. ... 151

Forwarding Origin Server IP and port number to clients. .. 152

Parsing out forwarded Client IP from request header. ... 152

Forwarding response's TTL value to clients. .. 153

The client_linger and os_linger settings. .. 153

Dealing with empty HTTP Host headers. .. 154

Dealing with HTTP Host headers that cannot be matched to defined websites. 154

Rewriting of HTTP/1.0 requests to HTTP/1.1. ... 154

On dealing with HTTP/1.0 clients and/or proxies. ... 155

Use of connection close by Origin Servers. ... 155

Compression of HTTP/1.0 responses. ... 155

Keep-Alive for HTTP/1.0 connections. ... 156

Reporting number of HTTP/1.0 requests. .. 156

Storing different versions of cached responses for HTTP/1.1 and HTTP/1.0 clients. 156

Configuring additional HTTP headers for HTTP/1.1 and HTTP/1.0 requests. 157

Redirecting for 404 and 500+ response codes. .. 157

Serving/injecting file system content. ... 159

aiCache V 6.291

 User Guide
www.aiCache.com

7

Get your life backÊ
É 2001-2013 aiCache, Inc .

Configuring HTTPS. .. 161

Introduction. ... 161

Obtaining an HTTPS certificate. ... 162

Self-signed HTTPS certificate. .. 162

Making sense of certificate file content. .. 163

Configuring multiple HTTPS web sites. ... 164

Chained HTTPS/SSL Certificates. .. 164

About HTTPS/SSL Cipher List. .. 166

Disabling SSLV2. .. 166

HTTPS/SSL error counters. ... 166

Limiting websites to HTTPS traffic only. ... 167

Origin Server traffic with aiCache in HTTPS mode. .. 167

HTTPS request logging. .. 169

HTTP-to-HTTPS and HTTPS-to-HTTP redirection. .. 169

aiCache Plug-in Support. ... 172

Introduction. ... 172

Defining plugins. ... 173

Attaching plugins. ... 174

Coding plugins. ... 174

Compiling plugins. ... 180

Plugin statistics. ... 181

Access and Error Log Functionality. ... 182

Introduction. ... 182

Configuring logging ... 183

Size-based access log file rotation ... 183

On-demand log file rotation via CLI or USR1 signal. ... 183

aiCache V 6.291

 User Guide
www.aiCache.com

8

Get your life backÊ
É 2001-2013 aiCache, Inc .

Access log file formats. ... 184

Selective Log suppression ... 187

Log decimation. ... 187

Logging requests sent to origin servers. .. 188

Logging slow responses from origin server... 188

Error logging logic when under duress. ... 188

Stayin' alive... ... 189

Front-ending with aiCache, the additional benefits. ... 190

Off -loading of TCP/IP processing, request/response delivery and enforcing time, size and sanity

limits on requests... 190

Request blocking and basic redirection. ... 191

Filtering of request bodies (BMR patterns). ... 192

Flexible request decimation. ... 192

Operating Accelerated Websites in Fallback Mode. .. 193

Operating Accelerated Websites in HC Fail Mode. ... 193

[Deprecated] User-Agent based redirection. ... 194

Website or pattern level redirection, inverted logic. .. 194

Pattern-level redirection, regular logic. ... 197

Pattern-level redirection exclusion based on client IP address. ... 197

Cookie-driven redirection. .. 199

Cookie-driven OS tagging. .. 200

Managing Keep-Alive Connections. .. 201

Client-Side Keep-Alive connections. .. 201

Server-Side Keep-Alive connections. .. 201

Command Line Interface .. 204

Self-refreshing Web Monitor: statistics and pending requests. ... 204

aiCache V 6.291

 User Guide
www.aiCache.com

9

Get your life backÊ
É 2001-2013 aiCache, Inc .

Accessing statistics web pages via dedicated hostname. ... 207

Simple pattern-driven content expiration page. ... 211

5-second statistics snap files. ... 212

SNMP Monitoring. ... 213

Global OID prefix. ... 216

Website-specific OIDs. .. 216

Example list of aiCache SNMP OIDs. .. 217

Clustering aiCache: United We Stand 220

Simplifying configuration management in distributed setups. .. 222

Building HA Clustered aiCache setup with VRRP. ... 226

Prerequisites. .. 226

VRRP introduction. ... 226

Assuring hot-hot setup. .. 229

Example VRRP configuration. .. 229

Basic VRRP commands, operation and troubleshooting. .. 231

Conclusion. .. 231

Executing aiCache commands via web requests. .. 232

Denial-of-Service Attack Protection. ... 233

Introduction to DOS Attacks. ... 233

First Level Of Defense: malformed request protection, URL blocking, BMR patterns and no-

replacement-for-displacement. .. 233

Second Level of Defense: IP blocking. ... 234

The third level of defense: intelligent request throttling. ... 236

The fourth level of defense: Reverse Turing Access Token Control (RTATC). 238

Introduction to RTATC. .. 238

Flexible Challenges. .. 238

aiCache V 6.291

 User Guide
www.aiCache.com

10

Get your life backÊ
É 2001-2013 aiCache, Inc .

Turning RTATC mode on/off. ... 240

RTATC Statistics Reporting. ... 241

RTATC and Intelligent throttling. ... 241

Blocking and intelligent traffic throttling in NAT'd setups. .. 241

Assisting with DOS forensics. ... 241

Client IP dependency when in IT or RTATC DOS protection modes. ... 242

Best defense is layered defense. .. 242

DOS attack detection. .. 242

Reporting and Aggregation of aiCache statistics via HTTP PUT method. .. 244

Automated Monitoring and Alerting. .. 245

Alert suppression via alert_exclude_pat. ... 248

Expiration Email alerts. .. 249

Using aiCache for 0-overhead error reporting, logging and alerting function. 250

Reporting using a dedicated error reporting website. ... 250

Error reporting using bad_response pattern flag. .. 251

Error reporting using pattern-level alerting. .. 251

Advanced performance tuning. .. 253

Deferred TCP Accept Option. .. 253

Administration .. 254

Starting up and shutting down. .. 254

Before starting up. ... 254

Starting up .. 255

Shutting down. ... 257

License files. .. 258

Making Changes to Configuration Files. ... 258

Forcing configuration reload via watch file. .. 259

aiCache V 6.291

 User Guide
www.aiCache.com

11

Get your life backÊ
É 2001-2013 aiCache, Inc .

Collecting reload output messages. ... 259

Executing post-reload actions (deprecated). .. 260

Recommended configuration modification procedure. ... 260

Health, Statistics and Performance monitoring of aiCache... 261

Basics of health monitoring ... 261

Performance and Statistics Information ... 262

Operating Websites in Fallback Mode. ... 263

Soft Fallback Mode. ... 265

The Command Line interface ... 266

Introduction. ... 266

Cached Response Signature. .. 266

Logging into CLI. .. 267

help (shortcut: h) .. 268

alert hostname on|off [peer enabled] .. 268

blip IPrange on|off [peer enabled] .. 269

clipt on|off [peer enabled] ... 269

dump (shortcut: d) .. 269

exit or quit. ... 269

expire hostname uri_signature [peer enabled] .. 269

ep hostname regex_pattern [peer enabled] .. 270

fallback hostname on|off [peer enabled] .. 270

fblip filename on|off [peer enabled] ... 270

hcfail hostname on|off [peer enabled] ... 270

inventory hostname regex_pattern. .. 270

osdisable hostname ip_addres[:port] on|off [peer enabled] .. 271

p or pending [hostname]. ... 271

aiCache V 6.291

 User Guide
www.aiCache.com

12

Get your life backÊ
É 2001-2013 aiCache, Inc .

peer [on|off]. .. 271

r or runstat [g|hostname] [r|s|m|h] ... 271

resetstat [hostname] ... 272

reload. .. 272

rl or rotate_log. .. 272

si hostname regex_pattern. (Silent Inventory) ... 273

sif hostname regex_pattern. (Sorted By Fills) ... 273

sit hostname regex_pattern. (Sorted By fill Time) .. 273

sir hostname regex_pattern. (Sorted By Requests) .. 273

s|stats|statistics [hostname] .. 273

shutdown .. 273

Recommended aiCache setup. .. 275

Common pitfalls and best practices. ... 275

Testing and troubleshooting. .. 277

The Single Server Deployment ... 279

Webby-worthy production setup ideas. .. 279

Web site troubleshooting 101. .. 280

Using aiCache to facilitate website transition. .. 282

Using aiCache to address AJAX cross-domain limitations. .. 284

Frequently Asked Questions. .. 286

What kind of web sites benefit from aiCache the most ? ... 286

We're a busy site that is low on tech staff, can we get help with install and configuration ? 286

What kind of hardware do you recommend for an aiCache server ? ... 286

Why does aiCache only run on Linux and why 64bit ? .. 287

Why aiCache when we have Apache and Microsoft IIS ? .. 287

Why aiCache when we have [insert a proxy web server here] ? .. 287

aiCache V 6.291

 User Guide
www.aiCache.com

13

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache does work miracles with HTTP, what about HTTPS ?... 288

Can we use aiCache to redirect mobile users to a different web site ? .. 288

Obtaining aiCache support. .. 289

Appendix A: complete list of configuration directives. ... 290

Appendix B: Up and running in 5 minutes or less. ... 300

Appendix C: Maximizing aiCache benefits: Client-Side Personalization Processing. 304

Introduction. ... 304

The problem with server-side personalization. ... 304

Client-Side Solution. .. 305

Testing. .. 306

Conclusion. ... 306

Appendix D: Performance and stress testing of aiCache setups. ... 308

Enable caching. .. 308

Tools to use to generate a simple load test. .. 308

Beware of network limitations. ... 309

Beware of load generator limitations. .. 309

General performance improvement suggestions. ... 309

Enable Caching and Compression. .. 309

Increase available network bandwidth. .. 310

Increase system-wide and per-process number of file descriptors. ... 310

Breaking the 64K open connections limit. .. 310

Streamline handling of TIME_WAIT timeout. ... 310

Client-Side Keep-Alive connections. .. 311

Server-Side Keep-Alive connections. .. 312

aiCache V 6.291

 User Guide
www.aiCache.com

14

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache End User License Agreement.

THIS IS A LEGAL AGREEMENT (ñAGREEMENTò) BETWEEN YOU AND AICACHE, (ñLICENSORò). PLEASE READ THIS AGREEMENT
CAREFULLY. BY INSTALLING AND/OR USING THIS SOFTWARE, AS A RESULT OF PURCHASE AND/OR TRIAL DOWNLOAD, YOU AGREE,
ON BEHALF OF YOURSELF AND YOUR COMPANY (COLLECTIVELY ñLICENSEEò), TO BE BOUND BY ALL OF THE TERMS AND CONDITIONS
OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THESE TERMS AND CONDITIONS, YOU ARE NOT PERMITTED TO USE THE SOFTWARE.

1. License Grant. Licensor grants to Licensee a worldwide, nonexclusive, nontransferable, royalty free license to use the aiCache software (the
ñSoftwareò). Licensee is permitted to make a single copy of the Software for backup purposes. Except as expressly authorized above or as permitted by
applicable law, Licensee will not: copy, in whole or in part, Software or any related documentation; modify the Software; reverse compile, reverse
engineer, disassemble or reverse assemble all or any portion of the Software; rent, lease, license, sublicense, distribute, transfer or sell the Software; or
create derivative works of the Software. Licensee obtains no rights in the Software except those given in this limited license.

2. Ownership. The Software, any related documentation and all intellectual property rights therein are owned by Licensor, its affiliates and/or its
suppliers. The Software is licensed, not sold. Copyright laws and international copyright treaties, as well as other intellectual property laws and treaties,
protect the Software. Licensee will not remove, alter or destroy any copyright, proprietary or confidential notices placed on the Software or any related
documentation. Licensee agrees that aspects of the Software, including the specific design and structure of individual programs, constitute trade secrets
and/or copyrighted or patented material of Licensor, its affiliates and/or its suppliers. Licensee agrees not to disclose, provide, or otherwise make
available such trade secrets or material in any form to any third party without the prior written consent of Licensor. Licensee agrees to implement
reasonable security measures to protect such trade secrets and material.

3. NO WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW AND SUBJECT TO ANY STATUTORY
WARRANTIES THAT CANNOT BE EXCLUDED, THE SOFTWARE AND ANY RELATED DOCUMENTATION ARE PROVIDED TO LICENSEE "AS
IS." LICENSOR MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND EXPRESSLY DISCLAIMS AND EXCLUDES TO THE MAXIMUM
EXTENT PERMITTED BY APPLICABLE LAW ALL REPRESENTATIONS, ORAL OR WRITTEN, TERMS, CONDITIONS, AND WARRANTIES,
INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
SATISFACTORY QUALITY AND NONINFRINGEMENT. WITHOUT LIMITING THE ABOVE, LICENSEE ACCEPTS THAT THE SOFTWARE MAY
NOT MEET LICENSEEôS REQUIREMENTS, OPERATE ERROR FREE, OR IDENTIFY ANY OR ALL ERRORS OR PROBLEMS, OR DO SO
ACCURATELY. LICENSEE USES THE SOFTWARE AT HIS/HER OWN RISK. This Agreement does not affect any statutory rights Licensee may
have as a consumer.

4. EXCLUSION OF CONSEQUENTIAL AND OTHER DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR, ITS AFFILIATES OR ITS SUPPLIERS BE LIABLE TO LICENSEE, LICENSEEôS CUSTOMERS, OR OTHER USERS, FOR
damages of any kind including, WITHOUT LIMITATION, DIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES OF ANY
KIND ARISING OUT OF THE LICENSE OF, USE OF, OR INABILITY TO USE THE SOFTWARE (INCLUDING, WITHOUT LIMITATION, DATA LOSS
OR CORRUPTION, ECONOMIC LOSS, LOSS OF ACTUAL OR ANTICIPATED PROFITS, LOSS OF CONFIDENTIAL INFORMATION, BUSINESS
INTERUPTION, LOSS OF PRIVACY, FAILURE TO MEET ANY DUTY OF REASONABLE CARE OR NEGLIGENCE) EVEN IN THE EVENT OF THE
FAULT, TORT, STRICT LIABILITY, BREACH OF CONTRACT, BREACH OF STATUTORY DUTY OR BREACH OF WARRANTY OF LICENSOR, ITS
AFFILIATES OR SUPPLIERS AND EVEN IF LICENSOR, ITS AFFILIATES OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES OR SUCH DAMAGES WERE FORESEEABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
INCIDENTIAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY.

5. LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL LICENSORôS
LIABILITY EXCEED THE LICENSE FEE PAID BY LICENSEE OR US$5.00, WHICHEVER IS GREATER. THIS LIMITATION OF LIABILITY AND
RISK IS REFLECTED IN THE PRICE OF THE SOFTWARE. NOTWITHSTANDING THE FOREGOING, NOTHING IN THIS AGREEMENT SHALL
EXCLUDE OR LIMIT LICENSORôS LIABILITY TO LICENSEE FOR ANY LIABILITY THAT CANNOT, AS A MATTER OF APPLICABLE LAW, BE
EXCLUDED OR LIMITED.

6. INDEMNIFICATION. BY ACCEPTING THIS AGREEMENT, LICENSEE AGREES TO INDEMNIFY AND OTHERWISE HOLD HARMLESS
LICENSOR, ITS OFFICERS, EMPLOYEES, AGENTS, SUBSIDIARIES, AFFILIATES, SUPPLIERS AND OTHER PARTNERS FROM ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES ARISING OUT OF, OR RELATING TO, OR RESULTING
FROM LICENSEEôS USE OF THE SOFTWARE OR ANY OTHER MATTER RELATING TO THE SOFTWARE.

7. Termination. Licensor may immediately terminate this Agreement and the license granted hereunder if Licensee fails to comply with
the terms and conditions of this Agreement. Upon such termination, Licensee must immediately cease using the Software, destroy or delete
all copies of the Software and upon the request of Licensor, certify the destruction or deletion of the Software. Licensee may terminate this
Agreement and the license granted hereunder at any time by destroying or deleting all copies of the Software. ALL DISCLAIMERS,

aiCache V 6.291

 User Guide
www.aiCache.com

15

Get your life backÊ
É 2001-2013 aiCache, Inc .

LIMITATIONS OF LIABILITY AND ANY OTHER PROVISIONS INTENDED TO SURVIVE TERMINATION WILL SURVIVE ANY TERMINATION AND
CONTINUE IN FULL FORCE AND EFFECT.

8. International Trade Compliance. The Software and any related technical data is subject to the customs and export control laws and
regulations of the United States ("U.S.") and may also be subject to the customs and export laws and regulations of the country in which it is
installed.

9. Governing Law. The laws of the State of Nevada, United States, without regard to conflicts of laws principles, govern this Agreement.
If applicable law does not permit the parties to agree to the governing law, the laws of the country in which Licensee installs or acquires the
Software govern this Agreement. To the extent permitted by applicable law, any dispute arising under this Agreement or relating to the
Software shall be resolved by a court of proper jurisdiction in Nevada, United States. Licensee and Licensor irrevocably submit to the
jurisdiction of such courts and waive any and all objections to jurisdiction a party may have under applicable law. Notwithstanding the
foregoing, if the Software is installed or acquired in the Peopleôs Republic of China, any dispute arising under this Agreement or relating to
the Software shall be resolved by binding arbitration, held in Las Vegas, Nevada, United States, under the Judicial Arbitration and Mediation
Services (JAMS) International Arbitration Rules.

10. Legal Effect. This Agreement describes certain legal rights. Licensee may have other rights under applicable law. This Agreement
does not change Licenseeôs rights under applicable law if such laws do not permit the Agreement to do so.

11. Miscellaneous. This Agreement constitutes the entire agreement between Licensor and Licensee and governs Licenseeôs use of
the Software, superseding any prior agreement between Licensor and Licensee relating to the subject matter hereof. Any change or
modification to this Agreement will only be valid if it is in writing and signed on behalf of Licensor and Licensee. A failure by either party to
enforce its rights under this Agreement is not a waiver of those rights or any other rights it has under this Agreement. The parties disclaim
the application of the United Nations Convention on the International Sale of Goods. The terms of this Agreement are severable. If any term is
unenforceable for any reason, that term will be enforced to the fullest extent possible, and the Agreement will remain in effect. The Software
and any related technical data are provided with restricted rights. Use, duplication, or disclosure by the U.S. Government is subject to the
restrictions as set forth in subparagraph (c)(1)(iii) of DFARS 252.227-7013 (The Rights in Technical Data and Computer Product) or
subparagraphs (c)(1) and (2) of 48 CFR 52.227-19 (Commercial Computer Product ï Restricted Rights), as applicable. To the extent permitted
by applicable law, Licensee may not assign this Agreement, and any attempted assignment will be null and void. aiCache, the aiCache logo,
and other aiCache names and logos are the trademarks of aiCache Technology LLC or its affiliates.

12. Contact Information. Any inquiries regarding this Agreement or the Software may be addressed to Licensor contact found on the
website, www.aicache.com.

http://www.aicache.com/

aiCache V 6.291

 User Guide
www.aiCache.com

16

Get your life backÊ
É 2001-2013 aiCache, Inc .

Introduction to aiCache.

aiCache is a unique software product that creates a better user experience by increasing the speed and

availability of your site. aiCache accomplishes this by offloading request processing from the web, application

and database tiers, reducing code complexity and the cost for servers, space, power and cooling.

Typical web site setup overview.

Before we discuss the numerous benefits and advantages aiCache has to offer, let us spend few quick

minutes reviewing typical web site setup and associated challenges.

A typical infrastructure setup of an Internet web site might contain some/all of the following major

components:

 - Web Servers - such as Apache, Microsoft IIS and similar. When a number of servers are used, this

component is frequently called the web farm. The reasons for having a number of these servers are speed &

availability. Using a single web server creates a single point of failure and a single server is typically not

capable of coping with significant amount of web requests. It is not uncommon to see web farms composed of

dozens of web servers.

The web servers receive HTTP requests from end-userôs web browsers and serve HTTP responses back, in

the form of either static files, obtained from a file system - such as images, Javascript, CSS or dynamically

generated responses. These web servers are called origin servers henceforth, as it is where the Web content

originates.

- Application or Middleware Servers: for example, JBoss App Server, Tomcat Web Container
1
, BEA

WebLogic, IBM Webshere or custom-written software. These servers execute business logic functions such as

customer profile editing, rendering of a blog page, product search, shopping cart functionality etc. The reasons

for having a number of these servers are similar to those for ñfarmingò of web servers.

- Back-end Servers: such as Database Servers (e.g. MySQL, Oracle, Microsoft SQL Server). This is where

persistent information, such as customer profiles, product information, message board articles, siteôs editorial

content might be stored. Frequently the database itself might be partitioned ("sharded") or setup as write master

and a number of read replicas, resulting in multiple database servers. Sometimes information store is not a

database, but a file system, such as NFS (prevalent in Unix/Linux environments) or CIFS (MFST Windows-

based setups).

1
 Java, Sun, Solaris are registered Trademarks of Sun Microsystems Inc; Weblogic is registered Trademark of BEA Inc;

Websphere, AIX are registered Trademarks of IBM. Apache , Jakarta, Tomcat are registered Trademarks of Apache Software

Foundation; Oracle is a registered Trademark of Oracle Inc; IIS, SQL Server are registered Trademarks of Microsoft Inc;

aiCache V 6.291

 User Guide
www.aiCache.com

17

Get your life backÊ
É 2001-2013 aiCache, Inc .

- Shared file store: such as NFS or CIFS file servers or filers. This is frequently used to share common

files ï configuration files, binaries, static web content and backup data.

- Search engines/appliances: such as Google, Sphinx, Lucene, Fast etc . These are used to execute search

requests against site's content ï such as editorial content, user blogs/posts, video/image metadata etc.

Rather frequently, application server functionality is ñembeddedò right into web servers. Examples include

Apache/Tomcat (Apache webserver connected to Tomcat servlet/JSP container via JK connector), Apache/PHP

with PHP interpreter embedded into Apache webserver, IIS/ASP (Microsoft ASP) and ColdFusion via the web

server connector.

Some web sites include custom back-ends. For example, a web site dedicated to news might rely on

proprietary systems that provide some kind of news wires APIs, a web site serving financial quotes might rely

on market data feeds and so on.

There are, of course, much simpler web site setups than that, typically consisting of a single web server.

Such web server might co-reside (share hardware) with database software and result in a "3-in-1" setup. Such

simplified setups are rarely adequate for sites with any volume of traffic.

We are not mentioning another important infrastructure component - the network. It typically encompasses

Internet uplinks, routers, firewalls, load balancing hardware and network switches. This Guide assumes that

network capacity and its performance, across all of the layers/components, is sufficient to support required

volume of traffic.

Common challenges experienced by web sites with heavy traffic.

When subjected to heavy user traffic, typically manifested by large number of requests (typically measured

as RPS ï requests per second) and simultaneous client connections, the common web site setup as described in

previous section has a number of associated issues.

End-user experience suffers, especially with dynamically generated content, which is often slow to

generate and stresses all or most of components of the infrastructure ï from web servers to app servers to

the backend databases.

It is not uncommon to see scenarios where dynamically generated web pages take a few seconds to be

generated on the fly, each such request requiring creating a new process on web servers, compilation of code

and/or instantiation of hundreds of new objects on app servers and execution of multiple, fairly expensive

queries on DB side. Even when serving static content off a file system, the resulting disk IO might place heavy

burden on web server. Imagine having to serve hundreds of requests per second, each requiring similar

resources and you can easily see why and how web sites might get slow or melt down outright.

Quite often the majority of static and dynamically generated content is the same for significant percentage

of web site visitors, but there is no way to share it across different users in satisfactory and flexible way.

The logic that drives content generation often relies on a-process-per-request model, meaning a new

system process/thread needs to be established and maintained for each request. This places a heavy burden

across infrastructure, requiring increase in number of servers and associated spend on power, cooling, space and

aiCache V 6.291

 User Guide
www.aiCache.com

18

Get your life backÊ
É 2001-2013 aiCache, Inc .

maintenance. Higher server CPU loads and increasing memory utilization, resulting from such dedicated-

process-per-request architecture routinely bring even most powerful servers to their knees, resulting in untold

hours of downtime, unhappy users, declining customer retention, shorter site visits and lost revenues.

Quite frequently the web servers, already busy processing user requests, are also tasked with HTTPS

traffic encryption , a very CPU-intensive activity.

Some sites do not scale horizontally, due to backend or other limitations and simply cannot be made to

scale by adding extra HW, without going through major overhaul of code base and design, yet thereôs no time

or money in budgets to allow for such overhauls.

In order to tackle the performance problems, all too often companies first resort to buying more HW ï

more web servers, more application servers, database servers and so on. Often at quite a steep acquisition cost

and at ever increasing expense and run rates resulting from having to manage ever growing environments,

expand existing or move to new datacenters, acquire more power and cooling capacity etc. It is quite common

to see situations when existing datacenter or hosting cage capacity is exhausted and then expense grows

ever more out of control.

Faced with numerous limitations (spend, space/power/cooling in datacenters) companies frequently share

servers between different web sites and applications. It is exceedingly hard to control quality of code in the

time of smaller TTM requirements and as a result, faulty code may bring down a whole number of web

sites and servers. It could be as simple/direct as overloading of the servers that the faulty code is running on

(along with all other applications sharing the same server) or indirect ï by stressing out backend database

system that is shared with other application.

When thereôs an outage in such a complex, shared web setup (it is not uncommon to see hundreds of

servers in todayôs Datacenters serving some of the busiest web sites), it is often hard to pinpoint the problem

application due to limited instrumentation available in applications/code. The simple question of "which

application is running slow and bringing the site (or whole shared web farm) down right now?" becomes very

hard to answer. Resorting to complete restarts of web farms is a common attempt at remediation ï only to see

the web servers go down almost instantly with no easy way to identify just what is ailing the setup and restore

the service.

When and if the culprit is finally identified, it still is very hard to isolate/disable the failing application

to let other applications to stay up, due to inevitable interdependencies.

It is equally hard to have up-to-the-second information on current traffic: volume (requests per second,

bytes in/out, different request types), distribution across web sites (which one is being hit the hardest, what is

the spike ?) and response times for different applications (which one is the slowest: customer login, product

search, news search ?) . While a limited subset of this information can be distilled from log files collected on

web servers, it is a time consuming, all-hands-on-deck process that is never real-time.

Heavy traffic sites routinely serve millions of web requests a day (ñhitsò) and generate very large log files

that are then processed for various purposes. Due to the sheer size of these log files, log file management

becomes an unpleasant chore and all too often web servers simply run out of disk space and stop serving

requests.

It is not uncommon for hackers to target web serves in their attacks. Proprietary and wide-ranging

architectures of web sites make it much harder to maintain adequate security. Security holes are often first

aiCache V 6.291

 User Guide
www.aiCache.com

19

Get your life backÊ
É 2001-2013 aiCache, Inc .

discovered and exploited by hackers, leaving web site owners to wait for days or weeks for security patches to

be issued by respective software vendors.

aiCache to the rescue.

Letôs consider a popular news web site. Most of web pages on such web sites typically contain information

that is updated (published) quite frequently throughout the day. In order to guarantee freshness of content, pages

are likely to be generated dynamically upon request. This response generation process is typically slow and

consumes resources on web servers, app and database servers alike.

Yet even with these seemingly non-stop changes and breaking news to deliver, it can be shown that most

pages can be cached for some period of time (from few seconds to few minutes or more), still keeping the

content sufficiently fresh, while greatly enhancing end-user experience and dramatically reducing the load on

overall web site infrastructure.

 Same can be said of most types of web sites on the Internet:

¶ Community and social networking sites ï where 95%+ of access is read-only, such as reading of

messages or blog posts, browsing of user galleries or popular profile on a social networking site. Each

view of these items typically requires establishment of a client connection, spawning of a process on the

web server and application server, interpretation and execution of some logic, a connection to database

server, a number of SQL queries - often resulting in numerous disk IO and physical reads, before the end

result is obtained, processed and send to the requestor. While absolute majority of content hasnôt

changed since it was requested by a previous viewer some milli seconds ago, it is regenerated anew for

each and every request . This type of content is a perfect candidate for caching - instead of generating

this content anew for each visitor.

¶ Busy E-commerce sites where users browse popular items before selecting some into a shopping basket

and checking out. Again, most of the activities are read-only access to assorted product data ï to obtain

description, pictures, customer feedback and inventory of different products. These donôt change that

frequently at and should be cached instead of regenerating pages on the fly.

¶ Media web sites that offer access to popular videos ï often seeing tens of thousands of visitors trying to

access a particular video when it goes ñviralò, all in span of just few minutes, generating exactly the

type of traffic capable of melting down even largest web sites. Again, the pattern is very common - a

page is displayed with some basic metadata about a particular video, may be along with user comments

and ratings - the screen is identical for each and every user that is trying to view the actual video. This

type of content, too, is a perfect candidate for caching - instead of generating this content anew for each

visitor.

¶ News or news aggregation web sites, serving editorial content, news wire stories, financial market

quotes or blogs to visitors. On a day when a major story breaks, world sporting record is broken or

financial markets see a major move, such web sites are likely to see a very significant increase in

traffic, as visitors flock to the site's home page, read news articles, view stock quotes, search for news

aiCache V 6.291

 User Guide
www.aiCache.com

20

Get your life backÊ
É 2001-2013 aiCache, Inc .

moving the markets etc. Being able to cache these types of pages for just a few seconds often means a

difference between a healthy website with brisk response times and a total meltdown.

aiCache is a web site and web application acceleration product. It takes these basic ideas of caching

frequently requested content and brings them to the next level. Along with enhancing end-user experience and

dramatically slashing load on, and requirements to, the web site infrastructure, aiCache also delivers much

richer set of features and functionality that is not available with any other products - we shall explain these in

great detail later in this guide. aiCacheôs heritage can be traced back to 2001, when the product made first

appearance.

aiCache is placed in front of traditional web servers. As a result of such placement, aiCache is capable of

intercepting and responding to user requests before they ever hit origin web servers, App or Database servers,

helping to solve or mitigate most of the typical issues mentioned previously. In other words, by deploying

aiCache you can address most, if not all of your web siteôs problems at a minute fraction of cost, compared to

brute-force buy-more-HW approach or equally expensive and time consuming code changes and site redesigns.

The most noticeable benefit that deployment of aiCache offers is the ability to cache frequently accessed

content, so that the regular chain of ñWeb Servers - App Servers ï Backend Serversò is accessed less frequently.

It results in dramatic improvements in terms of web site performance and tremendous reduction of load across

all components of your infrastructure.

aiCache is a Linux application, custom written in C for maximum performance and flexibility. It runs on

most popular and ubiquitous Linux distributions. It utilizes the EPOLL mechanism, available only on Linux,

that offers unmatched scalability and performance for network IO, translating to ability to serve tens of

thousands of simultaneous clients off a single server (solving the famous C10K dilemma) with virtually zero

overhead. aiCache is a right-threaded application, utilizing a very limited number of threads (processes) ï

typically well under a dozen, to do most of the processing. This is in marked contrast to some other products

that rely on a single process or large pools of thousands of processes or threads, dedicating a thread to each

client request, a design that doesn't scale well in our opinion.

Test results show that under favorable conditions (fast clients, smaller, cacheable responses, sufficient

network bandwidth) single aiCache instance running on Intel(tm) Nehalem processor system is capable of

serving more than 260,000 RPS, that's around 1 billion requests per hour !

And lastly, aiCache is developed by a team thatôs been at the forefront of designing, building and

maintaining some of the worldôs busier web sites ï encompassing pretty much every single imaginable type of

web site and web technology. It is from this experience that features of the product were conceived, developed

and refined ï a rather distinguishing feature indeed.

aiCache features at a glance.

¶ Dynamic caching & sharing of web content, including GET and POST requests.

¶ RAM-based caching for unsurpassed response times. aiCache generates almost no disk IO.

¶ Ability to function as HTTPS end point, forwarding decrypted traffic to origin servers.

aiCache V 6.291

 User Guide
www.aiCache.com

21

Get your life backÊ
É 2001-2013 aiCache, Inc .

¶ Excellent scalability and high performance, tested to excess of 260,000 RPS per server.

¶ Flexible document freshness control, including cookie-driven control .

¶ Cluster support - run a centrally managed set of aiCache servers.

¶ Cluster-aware on-demand response-driven cache expiration .

¶ Fallback mode to keep your site up even in case of backend failures.

¶ Origin-Server-Of-Last-Resort feature, to further help server traffic in case of backend failures.

¶ Selective log suppression and decimation.

¶ Automated time-based or size-based log file rotation.

¶ Three different ways to monitor aiCache: cluster-aware CLI, Web and SNMP, with extremely rich set of

statistics available.

¶ Full support for regular expressions for pattern matching.

¶ Feature rich command line interface (CLI): full set of statistics, inventory check, document expiration

and removal, log file rotation and much more.

¶ Load balancing of requests across a number of ñoriginò web servers with 3 different load balancing

metrics supported.

¶ Monitoring health of origin servers, including content matching.

¶ Response preload/pre-fetch.

¶ Comprehensive security features, including cluster-aware, multi-layered defense against Denial-of-

Service attacks and protection against malicious requests .

¶ Flexible Mobile processing

¶ Flexible Geo processing

¶ User-Agent-based redirection

¶ Built-in comprehensive Health Monitor

¶ Configurable on-the-fly compression

¶ Advanced alerting warns you before there's user impact

¶ Extend aiCache with user-provided logic via aiCache plug-ins.

¶ Inject static (file-system based) content into accelerated sites

aiCache V 6.291

 User Guide
www.aiCache.com

22

Get your life backÊ
É 2001-2013 aiCache, Inc .

¶ Simply and automate configuration management in distributed setups

¶ And many more unique features that we shall cover in depth in this document

Document Conventions.

Throughout this document, you will see examples of operating system commands, aiCache command line

interface (CLI) commands, snippets from configuration files, and screen captures. Font and color changes are

employed so that these could be clearly distinguished from the surrounding text.

We use terms visitor, user, and customer to refer to web site visitors. Such users visit web sites by directing

their web browsers (Internet Explorer, Firefox, Chrome, Opera , Safari etc) to URLs that are hosted by web

sites.

We use term ñorigin (web) serverò to refer to web server(s) that are being accelerated by deploying

aiCache.

We use terms ñweb documentò, "response" to refer to files stored on, or content generated by, origin web

servers and subsequently requested by web siteôs visitors. Such web documents or responses include, but are

not limited to, dynamic pages generated using JSP/Servlet, PHP, .Net and other technologies, static HTML,

JavaScript, Content style sheets, images in various formats, PDF files, Flash animations etc.

We use term ñcacheableò request/response to refer to responses that can be cached/shared via aiCache.

Opposite to such requests are "0-TTL", "non-cacheable" requests/responses - these cannot and/or should not be

cached because they contain private data or because caching these doesn't offer any significant benefits. Yet, as

you shall discover, aiCache offers significant benefits even for traffic that cannot be cached. Some of the

benefits include request/response and connection offloading, response preload/pre-fetch and real-time traffic

reporting and alerting.

aiCache V 6.291

 User Guide
www.aiCache.com

23

Get your life backÊ
É 2001-2013 aiCache, Inc .

Key new features in aiCache V6.

Compared to prior versions, version 6 of aiCache offers following key new features and benefits:

¶ Support for HTTPS. Now you can have aiCache manage HTTPS traffic, while, optionally,

communicating via HTTP with origin servers, relieving them from encryption chores and

administration overhead.

¶ Support for customer logic via flexible, yet very easy to code, plugin architecture. Now you can

have arbitrary number of your own plugins examine incoming requests and tell aiCache to drop,

redirect, rewrite, change the TTL of requests or provide complete response bodies. aiCache

automatically collects and reports all of the plugin statistics, without having to code for it.

¶ Better scalability on multi-core systems with more than 4 CPU cores. aiCache has been tested to

over 260,000 Keep-Alive client req/sec. While very few sites ever will push this kind of traffic, but

massive scalability is there should you ever need it.

¶ Multiple listen ports, both HTTP and HTTPS, can now be specified. You can tie a listen port to a

website or still have aiCache tie incoming requests to website via regular logic.

¶ Support for "origin servers of last resort". Now, in addition to regular aiCache failback feature, you

can try filling requests against dedicated content-replica servers, should attempts to obtain responses

from regular origin servers fail.

¶ Increased set of collected statistics, at global, website and pattern levels. As usual, you can see the

stats via Web, CLI and SNMP interfaces.

Version 6 supports V5 configuration file syntax, so it is a simple drop-in replacement. A number of V6-

specific settings have been added, explained later in this Guide.

Effective Jan 2010 aiCache Ltd stops all new feature development for V5 of aiCache and places V5 into

maintenance mode, where we continue to address minor bugs. We recommend all of our customers to switch to

aiCache V6.

aiCache V 6.291

 User Guide
www.aiCache.com

24

Get your life backÊ
É 2001-2013 aiCache, Inc .

Example Web Site.

As we discuss features and configuration of aiCache, we shall refer to a fictional web site setup, so that

settings, commands and configuration files referred to throughout the rest of this document make more sense.

This fictional web site is www.acmenews.com
2
. The AcmeNews is in the business of providing news to a

large number of users. AcmeNews prides itself in being first to most stories, entertainment or financial, aiming

to have shortest story publishing time. Some content on the site, such as breaking news and section fronts, is

refreshed rather frequently ï every minute, to stay up to date. Some other content is more static and is only

refreshed once an hour, once a day and once a week.

AcmeNews supports community features, allowing users to comment on articles. When a page (news wire

story, editorial content etc) is displayed, user comments are shown below the actual story. AcmeNews prides

itself in allowing its users to enjoy real-time discussion thread updates - as soon a new topic or a response is

posted, the content updates to reflect the changes.

In addition to dynamic content, the web content includes large number of Javascript files, CSS files and

images, with file sizes ranging from 50B (for simple one-pixel images) to 50KB+ for some Javascript files and

higher quality images.

Internally the site is composed of a number of origin servers (the web farm), with the names of

www1.acmenews.com, www2.acmenews.com and so on, to be able to cope with large number of Web hits the

site gets. The exact mechanism used to load balance user requests across origin servers is not important.

Examples include: multiple DNS A records or CNAME aliasing, combined with dynamic DNS service, such as

Dynect or similar, load balancers - such as F5, A10, Netscaler, Alteon, HA Proxy etc.

All of the content served from www.acmenews.com is delivered via HTTP protocol, as opposed to the

secure form of it, HTTPS. At the same time AcmeNews maintains subscriber profiles for users that want get

access to paid subscriptions. In order to allow users to sign-up for these services in a secure fashion, a separate

secure web server is setup with the name of secure.acmenews.com. This server uses HTTPS to communicate

with the subscribers, encrypting all the traffic between the users and the server, so that usersô private

information is protected while in transit.

Business Development has been busy thinking of more features to add to the site, to attract even more

visitors - things like user comments on news articles, dedicated message boards, video section. A dedicated

mobile web site is also in works, aimed at attracting mobile clients.

Yet as the popularity of the AcmeNews grows, resulting in more page views, larger number of unique

visitors and longer visits, the site finds its response time starting to climb and load on all of the siteôs

infrastructure components increasing. Outages become all too frequent. Environment footprint keeps growing

with more and more servers going into the racks, requiring more expense for HW and SW purchases, additional

2
 Any resemblance to real web sites is unintentional.

http://www.acmewidgets.com/
http://www.acmenews.com/

aiCache V 6.291

 User Guide
www.aiCache.com

25

Get your life backÊ
É 2001-2013 aiCache, Inc .

space, power and cooling. But even throwing money at the problem doesnôt seem to work anymore and thereôs

a feeling that a radically different approach is in order as the current path is not sustainable.

And this exactly when the technology team, after days of research and brainstorming, comes up with an

idea and é drum roll é. aiCache enters the scene.

Prerequisites.

Understanding your Web Setup.

As the product is very easy to install and configure, chances are you will not need any special help. Basic

understanding of the web site setup is helpful. Typical questions that arise during the installation of aiCache

include document freshness criteria - as in what can be cached and for how long, origin server configuration

(what are the web servers that run the site and how is user traffic directed at them: DNS, load balancers) and

cookie/session management issues.

You might elect to install our product yourself, which requires some fairly basic Linux knowledge.

Alternatively, you can contact us for a quote on Professional Service engagement - a turn-key package aimed at

helping you to get up and running, straight from the source or one of our many partners worldwide.

Server Platform.

You need to have or be ready to obtain a 64 bit platform ï based on Intel or AMD CPUs, to run our

product on. aiCache requires Linux OS and almost any recent 64 bit distribution will do. 64 bit requirement is

there so that you can use more than 4GB of RAM per process ï which in turn provides more memory for

caching of content. The exact amount of RAM you'd need depends on your cache footprint ï number and size of

cached responses that are stored in the cache.

For example, letôs assume you want to cache 1000 active articles that average 50KB in size ï such set will

require about 50MB of RAM - a very small footprint. 100,000 pieces of content with same average size will

require 5 GB of RAM - still perfectly reasonable size. To help with keeping the memory footprint under control,

aiCache has a number of tricks up its sleeve, including advanced cache cleaner logic. You can configure just

how aggressive you want it to be - we shall have more to say about it later in this document.

As you already know, aiCache is right-threaded
3
, to take advantage of todayôs multi-core systems. It runs

as a single multithreaded process. You specify number of worker threads you want to have, ideally matching

3
 As opposed to single-threaded (cannot benefit as effectively from multiple CPUs) or process/thread-per-connection designs

(exhausts resources quickly with large number of requests/connections).

aiCache V 6.291

 User Guide
www.aiCache.com

26

Get your life backÊ
É 2001-2013 aiCache, Inc .

that number to number of available CPU cores (default number of worker threads is 4). As a ballpark guide, a

single, modern CPU core is capable of driving about 20,000 non-keep-alive cacheable RPS. So if you have 4

cores and configure 4 aiCache worker threads, you should expect to be able to handle around 80K RPS,

assuming most content is cacheable and you don't exhaust your network capacity. Likewise, 8 threads and 8

CPU cores can get you close to 160K RPS and so on. Very few sites push anywhere close to these kind of RPS,

but the capacity is there should you ever need it.

Being right-threaded also means that no matter the number of connected clients (30 or 30 thousand) or

request/sec (50 RPS or 250,000 RPS) youôre serving, you will still have only one process running with

configured threads - be ready to be amazed at extremely low CPU utilization that aiCache servers exhibit even

when under high loads.

aiCache is capable of fully utilizing gigabit network interfaces, so you are never constrained by aiCache

and instead, it is likely that the bottlenecks, if any, will be found at uplink, firewall, network and load balancing

level instead.

Please note aiCache is also available as ready-to-go Cloud images, including Amazon AWS image. We

strive to offer aiCache as a Cloud product available with other popular Cloud providers and integrators, such as

RightScale, 3Tera and others - please check the aicache.com web site for the latest information on aiCache in

the Cloud.

Operating Systems and Software Pre-requisites.

Almost any modern Linux distribution will do , as long as it is 64bit kernel, version 2.6.9 or newer. While it

doesn't require any additional software or special tricks, as usual you are likely to benefit by using most up-to-

date production version of 64bit 2.6+ Linux operating system with, as usual, the most recent recommended

security and performance patches applied. aiCache has been tested on Ubuntu 8 and 9, Fedora 10, Open SUSE

11, Red Hat 5.x and CentOS 5.x distributions, all in 64 bit mode.

aiCache requires reasonably recent Glib shared library (2.16.4 or later), Zlib shared library (any reasonably

recent version will do), OpenSSL shared library (v0.9.8+) and PCRE shared library. All of the libraries that

aiCache requires are normally pre-installed during OS installation and require no additional action on your part.

Libraries are shared, meaning they are not statically compiled into the aiCache binary but are instead resolved

and loaded dynamically during run time.

aiCache distribution carries within itself two different aiCache binaries - with and without HTTPS support.

This way, if your server lacks OpenSSL libraries and you don't require HTTPS, you can use HTTPS-free

aiCache binary.

SNMP integration feature requires Net-SNMP server software. Again, chances are itôs been installed as

part of OS install, if not you need to follow installation instructions for your flavor of Linux. We cover SNMP

integration in-depth later in this document.

aiCache V 6.291

 User Guide
www.aiCache.com

27

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache is also available as ready-to-go Cloud images, including Amazon AWS images. We strive to offer

aiCache as a Cloud product available with other popular Cloud providers and integrators, such as RightScale,

3Tera and others - please check the aicache.com web site for the latest information on aiCache in the Cloud.

Please note that high-traffic sites might to adjust some of the default values for assorted network

parameters/settings, we describe these settings and the recommended values elsewhere in this Guide.

Red Hat 5, Fedora 8 & derivatives warning.

Some Red Hat and Red Hat-derived distributions, such as Fedora 8, Red Hat 5.x and CentOS 5.2 might

come with an older version of GLib libraries and require download, compilation and install of newer GLib. You

can obtain most recent GLib library at http://www.gtk.org/download-linux.html . Please follow standard

practice of running configure, make, make instal . Don't worry - the installation of an updated GLib should not

take longer than few minutes of your time. Use a package manager of your choice or download and compile the

GLib by hand.

When manually compiled and installed, GLib installs into /usr/local/lib . To make sure aiCache loads

these newer libraries, not the default and older version, you can set LD_LIBRARY_PATH to point to

/usr/local/lib before you start aiCache. You can create a custom shell wrapper for aiCache, including this and

other settings, such as ulimit etc, in it . For example:

Increase number of allowed f ile descriptors

ulimit - n 124000

enable core file

ulimit - c 1000000000

point to directory with GLIB libraries in it

export LD_LIBRARY_PATH /usr/local/lib

start aicache

/usr/local/aicache/aicache - f aicache.cfg ïl 234324434.lic

aiCache won't start unless proper version of GLib library is installed on the system. A tell-tale sign of an

outdated GLib library version is an error message during startup that points to a g_* function being not found.

To address this please install newer version of GLib, as per instructions above.

Likewise, if you try to start HTTPS-enabled version of aiCache on a server without proper OpenSSL

libraries, it will refuse to start. aiCache distribution carries within itself two different aiCache binaries - with

and without HTTPS support. This way, if your server lacks OpenSSL libraries and you don't require HTTPS,

you can use HTTPS-free aiCache binary.

aiCache V 6.291

 User Guide
www.aiCache.com

28

Get your life backÊ
É 2001-2013 aiCache, Inc .

Installation.

Please note that aiCache is also available as ready-to-go Amazon AWS image. We strive to offer aiCache

as a Cloud product available with other Cloud providers - please check the web site for the latest information on

aiCache in the Cloud. If you choose to with an aiCache Cloud image, you don't have to download aiCache

binary or acquire aiCache licenses- it is all taken care of already, all you need to do is to order and start an

official aiCache instance.

Network Setup

Assuming you want to install aiCache on dedicated server(s), you must be able to connect the aiCache

server(s) to the network so that the aiCache can reach the origin web servers and in turn can be reached by

Internet users. Usually it means that there must be spare ports on your network switches and you have spare IP

addresses to assign to these new aiCache server(s).

Depending on volume of traffic you need to handle, you might elect to setup a single network connection

on aiCache servers or multi-home them instead. Consider using NIC-teaming if you have redundant network

switches to make aiCache's network connection highly available. Later in this guide we describe a VRRP-based

HA setup, with redundant, hot-hot aiCache servers assuring maximum uptime.

If you decide to co-locate aiCache software on the same server where an existing origin web server resides,

then there are no changes required to the network setup. You will only need to change the port the actual web

server listens on a to a different one, as the original port 80 will now be claimed by aiCache. Alternatively, you

can use multiple IP addresses (aliases) on the same server, bind you origin web server to one of them, and

configure aiCache to use a different one. Now, both origin server and aiCache can share the same port number.

aiCache distribution file.

The product usually comes in the form of a small Linux tar archive file that you obtain by direct download

from our web site or receive in the mail on some form of media, such as CD. Contained within the tar archive

are 2 aiCache binaries: one compiled with HTTPS support and one without , example configuration file,

README file, SNMP integration script, convenience install script, alert email script and Admin Guide in

Adobe PDF format. Also included is a plugin directory - containing plugin header file, plugin build script and

example plugin C source file.

After obtaining the distribution file, you can un-tar it in a temporary directory - for example in /tmp.

cd /tmp

tar - xvf aic ache .tar

cd aic ache

aiCache binaries.

The aiCache distribution contains 2 aiCache binaries: aicache and aicache_https, compiled without and

with HTTPS support, respectively. Otherwise, both files are identical in their functionality. We provide aiCache

aiCache V 6.291

 User Guide
www.aiCache.com

29

Get your life backÊ
É 2001-2013 aiCache, Inc .

binary (aicache) compiled without HTTPS support in case your system lacks OpenSSL libraries - in which case

you won't be able to start the HTTPS-enabled aiCache binary (aicache_https).

Clearly, if you require HTTPS support, you must run HTTPS-enabled binary and have OpenSSL libraries

installed. Your license file should also have https option enabled (all Cloud images are enabled for HTTPS

support and require no license file).

Installation.

To ease the installation, aiCache distribution includes a simple installation script - install.sh, that

automates most of the setup steps described below. The script creates user and group aicache:aicache,

/usr/local/aiacache and /var/log/aicache directories and copies distribution files to /usr/local/aicache. If you

choose to run the installation script to automate the install chores, you can skip to "Production License File"

section after running the install.sh script. The install script normally takes about one second to complete.

Alternatively, you might elect to perform the required steps manually, if that suits your requirements better.

Please refer to README file in the distribution tar file for step-by-step install instructions. For your

convenience the same README file is included as an Appendix to this document.

You need to select a location on host server's file system - aiCache installation directory, where to install

the aiCache binary. aiCache distribution weighs in well under 1MB in size, so you don't need much space to

install it.You might use the same directory or a different one to install aiCache configuration and license files.

You can use any name for installation directory, but we recommend using standard name of /usr/local/aicache.

To simplify matters to also recommend keeping the configuration and license files in the same directory,

possibly under /usr/local/aicache/conf subdirectory.

We recommend to select a different location (directory) for your log files, for example /var/log/aicache, as

you will most likely end up with a number of log files and you do not want them to clutter your main

installation directory. We also recommend that you configure logging directory on a drive or partition with

ample free space, especially for the sites with heady traffic. If you expect to serve 1000+ RPS, please make sure

the disk IO performance is adequate to write the log files. You can also use selective log suppression and log

decimation features of aiCache to dramatically reduce amount of log information aiCache generates. Unless you

need to collect it, consider disabling processing and logging of Referrer and User-Agent information (see

logging section later in this document) - this too, saves significant amount of disk space.

For convenience purposes, you can create a symlink in aiCache installation directory, for example

/usr/local/aicache/logs pointing to /var/log/aicache - it is rather a common setup. Spend some time setting up

automated log file rotation. A common practice is to configure aiCache to rotate it's log files, on the fly, just

past every midnite and move the rotated log files to a different location, where they are stored in accordance

with your log file retention policies. See the dedicated "Logging" chapter later in this Guide for more

information on aiCache access and error logging capabilities.

Production License File.

The aiCache distribution might include a demo-mode license file, called something like 2352352452.demo.

This demo license allows you to test full aiCache functionality for 30 days or so. Do not modify the license file

in any way as it will render the license invalid.

aiCache V 6.291

 User Guide
www.aiCache.com

30

Get your life backÊ
É 2001-2013 aiCache, Inc .

Unless you're running aiCache as aiCache's own Amazon AWS image or other approved Cloud aiCache

images, you will need to obtain a license file before you can use aiCache in production mode. To issue a license

file we require the output of ifconfig command, executed with the name of your production network interface.

For example, when you execute:

/sbin/ ifconfig eth0

you shall see output similar to the one below:

eth0 Link encap:Ethernet HWaddr 00:ee:dd:bb:0c:0e

 inet addr:192.168.168.8 Bcast:192.168.168.255 Mask:255.255.255.0

 inet6 addr: fef0::eee:4ddd:xxx:c0e/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:51421 errors:0 dropped:0 overruns:0 frame:0

 TX packets:85637 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

To issue a license, we only require HW (MAC) address of your production network interface ï in the

example above it is contained in the first line of the output. Please note that your HW address will be different

from the one shown in example. When sending the HW address (aka MAC address) to us, please send it as it

appears in the output of ifconfig command, colons and all, preserve the case and do not modify it in any way.

After the license is issued, you shall receive a small file, named something like 1827364490.lic Feel free to

look inside - it is a simple text file. Do not modify the license file in any way as it will render the license

invalid.

Copy the file into the directory where you installed aiCache binary and config file - in our case it was

/usr/local/aicache. To start aiCache you must specify both the name of a configuration file and the license

file, for example:

cd /usr/local/ ai cache

./ aic ache - f acmenews.cfg - l 1827364490.lic

aiCache checks the license file upon startup. Should any problems be encountered, you will see an error

message. Please refer to "Running aiCache" section for more information on aiCache option, testing

configuration file syntax etc.

Feel free to create a shell wrapper script for aiCache startup, so that you don't have to specify all of the

parameters every time you start up the server. For example:

export LD_LIBRARY_PATH /usr/local/lib

ulimit - c 1000000000

unlimit - n 128000

aiCache V 6.291

 User Guide
www.aiCache.com

31

Get your life backÊ
É 2001-2013 aiCache, Inc .

/usr/local/aicache/aicache - f myconfig.cfg - l 3245234523454.lic

When running Amazon AWS aiCache image or other Cloud aiCache images, license file is not required.

All cloud images are pre-enabled for HTTPS and require no action on your part.

 The aiCache cloud binary is pre-enabled and pre-installed by aiCache Ltd and requires no license. As

with most Cloud images, you will be billed per unit of resource (time or bytes downloaded/uploaded), of actual

usage of aiCache. As rates are subject to change, make sure to check with your Cloud Provider to obtain the

most up to date rates, terms and conditions.

aiCache V 6.291

 User Guide
www.aiCache.com

32

Get your life backÊ
É 2001-2013 aiCache, Inc .

Configuring aiCache: look Ma, no XML !

Configuring aiCache requires editing a single, simple text-based configuration file with an editor of your

choice. The configuration file is a good old simple "name value" text file, not an XML file.

 aiCache is extremely rich with features and it is your responsibility to configure aiCache to benefit your

web site the most. You can use included example configuration file as a starting point (template) for you own

configuration files. In most cases, to get up and running all you need to specify in the configuration file are a

web site name (such as www.acmenews.com) and IP addresses of the one of more origin web servers, it is that

simple.

Most admins get heartburn just thinking about having to learn about configuration files. Relax, aiCache is

very different. Just to illustrate how simple and very short aiCache configuration file could be, hereôs an

example and fairly minimalistic, yet fully functional, aiCache configuration file:

server

log_directory /tmp

website

hostname www.acme.com

pattern / simple 10

origin 1.2.3.4

Configuration File Sections.

The configuration directives in configuration file must be grouped in certain order (sectioned). As long

as you follow the provided template youôd be just fine - please refer to the picture on the next page to visualize

the ordering of the sections.

aiCache configuration file must contain, in this order:

¶ A required single global (server) section - it is identified/started by a "server" directive. This section

contains global configuration settings. This section must be followed by

¶ A required single website section - it is identified/started by a line containing "website", followed by

¶ At least one (required) or more of host sections, identified/started by a " hostname value" directive.

Host section(s) contain website-specific configuration settings. Each host section must specify at least

one origin server. It can also contain optional

¶ pattern section containing pattern matching rules

aiCache V 6.291

 User Guide
www.aiCache.com

33

Get your life backÊ
É 2001-2013 aiCache, Inc .

Pattern sections are optional, but since these are how you configure caching rules, most configuration

files do contain a number of pattern settings.

GLOBAL (SERVER) SECTION

server
listen http * 80

listen https * 443 host.cert host.key AES256-SHA

username aicache

groupname aiache

éé..

WEBSITE SECTION

website

HOST SECTION

hostname www.acmenews.com

origin 1.1.1.1 80

origin static.acme.com 80

PATTERN SECTION

pattern .html simple 2m

pattern .php simple 1m

é..

HOST SECTION

hostname media.acmenews.com

origin 3.3.3.3 80

origin media.acme.com 80

PATTERN SECTION

pattern .jpg simple 7d

pattern .gif simple 7d

é..

You might elect to order website-specific configuration settings in some logical order that makes sense to

you. For example, keep origin server directives together, do same for patterns. You might decide to keep origin

server directives at the end of each host section or in the beginning, following the hostname directive - it is up

to you.

aiCache V 6.291

 User Guide
www.aiCache.com

34

Get your life backÊ
É 2001-2013 aiCache, Inc .

However, a place where ordering of configuration settings is important is the pattern section where you

specify URL matching patterns. aiCache tries to match request URLs to these patterns in the order that they are

found in configuration files. When the first match is obtained, this matching process stops and appropriate

action is taken. It means that you might want to place more common patterns toward the top of the pattern list.

Likewise, put the least common pattern toward the bottom of the pattern list. While not a must, this tactic

is likely to improve performance. Exclusionary, everything-but patterns, should be placed before the patterns

they are intended to override.

Similarly, if you accelerate a number of busy websites on a aiCache server, place definition of the most

frequently accessed sites toward the top of the configuration file.

If you desire to break up your aiCache configuration into a number of smaller configuration files, instead of

having one large configuration file, you can do so via one or more of include file_name directives. These

directives can be placed anywhere within configuration file. Upon encountering an include directive, aiCache

opens the file that it references and continues parsing process with the content of included file. The included

file can, in turn, provide a number of include directives of its own.

You might use include directive to break up configuration so that configuration of each accelerated website

is stored in its own configuration file or, perhaps, store pattern sections in their own files etc. aiCache allows for

nesting of include directives up to 10 levels deep.

When running aiCache in clustered setup, you'd typically want to have each clustered aiCache server have

same configuration file. This too, can be accomplished with include directive - simply put settings that makes

each aiCache server unique, into a separate file and then use include directive pointing to that file. One setting

that is unique to each clustered aiCache server is the list of peers (on each node, it excludes node's own IP).

Configuration line format.

Each configuration line in aiCache configuration file must be in the following format:

parameter_name [space] param_value 1[space] param_value2 [space] [#comment] éò

Most parameters take a single value, some are just flags and require no value. A few take up to 7 values.

Parameter names must be in lower case.

Some configuration settings have reasonable default values and if you deem these to be right for your

setup, you don't have to specify such settings in the configuration file. Please see the configuration settings table

below for what parameters have default values.

Empty lines are allowed in the configuration files, as are dedicated comment lines If you need a dedicated

comment line, start it with a ñ#ò (pound) symbol. You can also add a comment to configuration setting line -

add such comment after last "#" symbol. For example:

comment line all by itself , preceded by and followed by an empty line

aiCache V 6.291

 User Guide
www.aiCache.com

35

Get your life backÊ
É 2001-2013 aiCache, Inc .

max_os_ka_reqs 20 # comment added to a configuration setting.

Please note that there might be cases where you want to have # (hash symbol) considered as a valid part of

a configuration setting (match or rewrite pattern etc), as opposed to having it treated the usual way ï as start of a

comment.

To accomplish that, terminate the configuration line with an additional ñ#ò (hash sign), followed by

optional comment. This way all of the ñ#ò symbols in the configuration line, except the last one, will be treated

as valid part of respective configuration setting. In other words, should multiple # symbols be discovered in

configuration line, aiCache will treat the last # as start of comment, all previous # symbols (if any) will be

properly treated as parts of respective settings.

For example:

...

rewrite /topnews.html /news.asp#top

The li ne above wonôt work, aiCache will treat #top as comment

and it will be stripped out

rewrite /topnews.html /news.asp#top # Rewrite to #top

The line above is proper way to do it, comment starts with ñlastò hash on the line

and #top is properly includ ed into the rewrite pattern

Simple, exact and regular expression patterns.

To configure the caching time (aka TTL or time-to-live) for different URLs on your site, you can use

"exact", "simple" or "regular-expression" pattern types. While regexp patterns are much more powerful in

their matching abilities, in most cases simple patterns are all you need.

Exact pattern is a string that is tested for exact match against request's URL . For example:

pattern / exact 10m

matches URL that consists of "/" and nothing else. You won't be using exact patterns too frequently as they

are very limited in their matching ability. You'd most likely use these as a way to catch a few very specific

URLs that are hard or too expensive to accommodate for with other types of patterns - most noticeably the "/".

Simple pattern is a string that will be looked for in incoming URLs and if that string is present anywhere

within the request's URL, a match is declared. In other words, a partial match is performed with URL serving as

a "haystack" and simple pattern being a "needle".

For example:

aiCache V 6.291

 User Guide
www.aiCache.com

36

Get your life backÊ
É 2001-2013 aiCache, Inc .

pattern breakingnews.html simple 10m

pattern /static_content/ simple 7d

declares all URLs that contain breakingnews.html to be cacheable and assigns TTL of 10m. It also

specified that responses to any requests with URL containing /static_content/ are to be cached for 7 days. The

latter pattern would apply to URLs like /static_content/images/1x1.gif , /static_content/css/mainstyle.css,

/static_content/js/menu.js and so on. So if static content on your site uses this or similar type of naming

convention with a common prefix to URLs, you can match most of it via a single pattern directive.

Due to partial nature of matching of simple patterns, be aware that a simple pattern "acme" matches

acmenews.html, acme.php, notacme.asp.

Regexp patterns (regular expressions) are used when you cannot accomplish what you need with simple or

exact patterns.

There is a wealth of information freely available on the Web about regular expressions and you can study

some of it. In most cases you will know enough about these regexps by simply looking into the example

configuration files.

A regular expression pattern can be anchored to the beginning of line by using caret sign: ^aiCache will

match anything that starts with ñaiCacheò. A dollar sign anchors pattern to the end of line: tor$ matches any

string that ends with ñtorò.

You can see that some symbols have special meaning in regexps. It means also that to match such symbols

literally, one has to escape them. For example, to match period sign ñ.ò, followed by ñjsò we would use \.js.

Pretty simple stuff, yet it is much more powerful than that as you will discover if you do read more on the

subject.

A frequently asked question is how to make a regular expression pattern case insensitive. To do that,

simply prefix the (required part of) pattern with (?i). As usual, you can use aiCache's simple "pattest" tool to

test your patterns:

$pattest - p '(?i)aaa' - s AAA

[Success]: Matched.

 Pattern: >(?i)aaa<

 String: >AAA<

$patte st - p 'aaa' - s AAA

[Failed]: Not matched.

 Pattern: >aaa<

 String: >AAA<

Please note that you cannot use just "/" as a pattern (regexp type or simple type) - as it is likely to match

almost all of the URLs on your site - probably, not what you want to happen. For much more information on

the PCRE syntax, google for it or visit this link: http://library.gnome.org/devel/glib/stable/glib-regex-

syntax.html

aiCache V 6.291

 User Guide
www.aiCache.com

37

Get your life backÊ
É 2001-2013 aiCache, Inc .

Pattern testing tool.

To ease creation and testing of regular expression match and rewrite patterns, aiCache distribution includes

a small command line tool: pattest. The installation script places it into the same directory as aiCache binary,

but you can move it as you see fit - for example, you can move it to /usr/local/bin, a commonly used directory

for assorted binaries.

The tool allows both regexp match testing and more complicated regexp rewrite testing. Right at the

command line you specify a pattern to use for matching, a string to match the pattern against and optional

rewrite string. We advise use of single quotes to enclose all of parameters, to prevent possible interpretation and

substitution/expansion of parameters by Linux shell. Here are some quick examples:

./pattest - p '^abc' - s abcdef

[Success]: Matched.

 Pattern: >^abc<

 String: >abc def<

./pattest - p '^abc' - s zabcdef

[Failed]: Not matched.

 Pattern: >^abc<

 String: >zabcdef<

./pattest - p '(abc).*' - s abced - r 'ZZZ'

[Success]: Rewrote original string:

>abced<

 To new string:

>ZZZ<

 Using pattern:

>(abc).*<

 And replacement stri ng:

>ZZZ<

./pattest - p '(abc).*' - s abced - r 'ZZZ= \ 1'

[Success]: Rewrote original string:

>abced<

 To new string:

>ZZZ=abc<

 Using pattern:

>(abc).*<

 And replacement string:

>ZZZ=\ 1<

URL match actions.

When a request URL matches a pattern, one or more of the following actions are taken:

¶ URL TTL might be assigned (including TTL value of 0, declaring request non-cacheable)

¶ URL might be blocked

aiCache V 6.291

 User Guide
www.aiCache.com

38

Get your life backÊ
É 2001-2013 aiCache, Inc .

¶ URL might be redirected

¶ URL might be rewritten

¶ URL might be rewritten and redirected

¶ URL might have "do not log" flag set (log suppression)

¶ URL might have some/all of its parameters discarded (URL caching signature parameter busting)

¶ URL might have a cookie and its value added as part of URL's cache signature

¶ URL might have request's User-Agent value added as part of URL's cache signature

¶ URL might have request's User-Agent rewritten and added as part of URL's cache signature

¶ URL might have request's Accept-Language value added as part of URL's cache signature

¶ URL might have its TTL set to 0 if a certain cookie is present in the request

¶ URL might allow for one or more cookies from origin server response to be cached

¶ Configured customer-provided plugin code can be executed

When no match is found for requestôs URL, the request is declared to be non-cacheable. In other words,

aiCache never caches a response unless it is configured to.

 Please note that the action list above is not a complete list, as we continuously enhance the product with

more features.

Example configuration file.

To reiterate, you configure all of the aspects of aiCache behavior via single, simple, text based, non-XML

name-value configuration file. You can name it to your liking, but the whatever name you choose must be

passed to aiCache in the command line (-f parameter). An example configuration file, called example.cfg, is

provided in distribution and you can use it as a starting point.

The configuration settings are very straightforward and very few of them are required in most cases,

resulting in configuration files that contains just few lines of settings. However, aiCache prides itself in an

incredible flexibility and this is why there're so many available options.

Should aiCache encounter a setting/directive it doesn't understand/support, an error message is printed out

to the console and/or error log file, pin-pointing the offending configuration line, so you can correct it. When

such warning is printed out, you either have provided a valid setting name but didnôt specify proper number of

required arguments or you have specified an invalid setting name.

aiCache V 6.291

 User Guide
www.aiCache.com

39

Get your life backÊ
É 2001-2013 aiCache, Inc .

Alternatively, you can start aiCache with " -t" option, to test your configuration file line-by-line. For more

details, please see "Starting aiCache" section.

If you desire to break up your aiCache configuration into a number of smaller configuration files, instead of

having one large configuration file, you can do so via one or more of include file_name directives. These

directives can be placed anywhere within configuration file. Upon encountering an include directive, aiCache

opens the file that it references and continues parsing process with the content of included file. The included

file can, in turn, provide a number of include directives of its own.

You might use include directive to break up configuration so that configuration of each accelerated website

is stored in its own configuration file or, perhaps, store pattern sections in their own files etc. aiCache allows

pretty nesting of include directives up to 10 levels deep.

When running aiCache in clustered setup, you'd typically want to have each clustered aiCache server have

same configuration file. This too, can be accomplished with include directive - simply put settings that makes

each aiCache server unique, into a separate file and then use include directive pointing to that file. One setting

that is unique to each clustered aiCache server is the list of peers (on each node, it excludes node's own IP).

Just to illustrate how simple and very short aiCache configuration file could be, hereôs an example and

fairly minimalistic, yet fully functional, aiCache configuration file:

server

log_directory /tmp

website

hostname www.acme.com

pattern / simple 10

origin 1.2.3.4

As you can see, barely a handful of configuration file lines are required to have a working setup. In the

example above, we define log directory of ñ/tmpò and we specify a single pattern that declares that all of the

URLs are cacheable for 10 seconds. It also declares a single origin server. You can also see that most of the

configuration settings have rather obvious, easy to remember and self-explanatory names.

Letôs now take a look at a more evolved example configuration file. Just for illustration purposes, the

example below contains a larger number of configuration settings. Once again, most configuration files will be

much simpler than the example below.

aiCache V 6.291

 User Guide
www.aiCache.com

40

Get your life backÊ
É 2001-2013 aiCache, Inc .

############################ Server Section #########################

server # REQUIRED

 listen http * 80

listen https * 443 host.cert host.key AES256-SHA:RC4-MD5 server_port 80

if_name eth0 # REQUIRED

server_name aiCache5x

admin_ip *

admin_port 111

admin_password secret

username test

groupname test

work_dir /usr/local/aicache

alert_dir /usr/local/aicache/alerts

logdirectory /var/log/aicache # REQUIRED

pid_file /var/run/acme.aicache.pid

log_healthcheck

logtype extended

accesslog access

dump_bad_req

debug_clip 1.2.3.4

stay_up_on_write_error

errorlog error

drop_user_agent

drop_refferer

aiCache V 6.291

 User Guide
www.aiCache.com

41

Get your life backÊ
É 2001-2013 aiCache, Inc .

hdr_clip X-Forwarded-For

refresh_hdr_clip

max_header_size 2000

max_body_size 50000

chunked_resp_size_hint 33000

maxkeepalivereq 10

maxkeepalivetime 10

maxclientidletime 4

max_os_resp_time 4

snmp_stat_interval 4

max_os_ka_connections 2

max_os_ka_req 4

 max_os_ka_time 10

max_post_sig_size 128

min_gzip_size 4000

compress_json

compress_xml

max_sig_size 512

max_post_sig_size 128

client_linger 0

os_linger 0

silent_400

cache_cleaner_interval 320

hard_cache_cleaner_interval 7200

max_log_file_size 100000

aiCache V 6.291

 User Guide
www.aiCache.com

42

Get your life backÊ
É 2001-2013 aiCache, Inc .

logging dedicated

shutdown_grace_wait 5

refresh_website

logstats

stat_url aiCachestat

keep_http10 on

table_stat_url aiCachetable

pend_url aiCachepend

alert_email support@a.b.c

alert_bad_req_sec 20

alert_max_cache_entries 10000

alert_client_conn_max 30000

alert_client_conn_min 5

alert_os_conn_max 20

alert_os_fails_sec 2

alert_req_sec_max 2500

alert_req_sec_min 10

alert_os_rt 2000

x_os_header X-aiCache-OS

x_ttl_header X-aiCache-TTL

peer 1.2.3.4

peer 1.2.3.5

peer 1.2.3.6

peer_prefix mysecretpeerprefix

###########################Website Section ############################

aiCache V 6.291

 User Guide
www.aiCache.com

43

Get your life backÊ
É 2001-2013 aiCache, Inc .

website # REQUIRED

hostname www.acmenews.com # REQUIRED

cname bbs.acmenews.com

cname mobile.acmenews.com

wildcard cms

sub_hostname content.acme.com

no_retry

404_redirect_location http://acmenews.com/404grace.html

 500_redirect_location http://acmenews.com/500grace.html

 prefetch_url /slowGetAdCall?page=home&area=top 100 gzip

 prefetch_http_header User-Agent TestUser Agent V1.0

 prefetch_conn_close

min_gzip_size 4000

min_gzip_size 4000

compress_json

compress_xml

ignore_case

ignore_ims

sig_ua

ua_sig_rewr Browser111 b1

fallback

forward_clip

logstats

decimate_log 100

decimate_bad_log 1000

aiCache V 6.291

 User Guide
www.aiCache.com

44

Get your life backÊ
É 2001-2013 aiCache, Inc .

conn_close

max_os_resp_time 4

max_url_length 128

ignore_no_cache

sig_ignore_body

max_os_ka_connections 2

 max_os_ka_req 4

 max_os_ka_time 10

healthcheck URL HTTP 10 10

alert_email

alert_max_cache_entries 53451

alert_max_bad_os 3

alert_os_fails_sec 4

alert_req_sec_max 3434

alert_req_sec_min 3000

alert_os_rt 5000

############################# origin Servers ####################

At least one must be specified for each defined hostname #

origin 127.0.0.1 8888 1

origin 127.0.0.1 8889 2

origin static.acme.com 80

############################# Patterns #########################

pattern .html simple 120 ignore_query

os_tag 3

aiCache V 6.291

 User Guide
www.aiCache.com

45

Get your life backÊ
É 2001-2013 aiCache, Inc .

label Pattern matching all of the .html files

param_partial_match

redirect_location http://promo.acme.com

0ttl_cookie customer_id

sig_cookie connection_type

 rewrite images /media/images

 rewrite_http_only

max_os_resp_time 4

sub_hostname media.acme.com

max_url_length 128

no_retry

post_block

ignoreparam param1

pattern forumdisplay regexp -120

conn_close

block

drop

request_type both

ignore_case

pattern / exact 1h

sig_ignore_body

dump_req_resp

aiCache V 6.291

 User Guide
www.aiCache.com

46

Get your life backÊ
É 2001-2013 aiCache, Inc .

Server/global section.

We start with ñserverò, a.k.a "global" settings section ï such settings are applicable to the whole server, as

opposed to the per-website parameter section. Some of the parameters defined in the global section are inherited

by website settings but may be overridden (set to different values) in the website sections. Website-level setting

always supersedes global-level setting. Likewise, some global and/or website-level settings may be overridden

(set to different values) in the pattern sections. Pattern-level setting always supersedes both global-level and

website-level setting.

The first configuration setting in aiCache configuration file must be server directive. You can begin config

file with empty or comment lines, but the first directive must be "server".

Global (system-wide) settings.

server Starts server (aka global) section of the configuration file. Required.

Parameters: none. Default: none

if_name eth0 Specifies a valid interface name that aiCache will run on. Required.

Parameters: interface name. Default: none

listen http * 80 IP address, port number and protocol that server listens on. You can

specify as many of these as your setup requires. HTTPS port require

additional parameters - see dedicated "Listen Ports" section.

Default: any IP address defined on the server, port 80.

admin_ip *

admin_port 2233

admin_password secret

IP address, port number and password for CLI (Admin) server.

Default: any IP address defined on the server, port 2233, "secret"

username aicache

groupname aicache

Identity to assume after startup. Server will assume the user and group

ID that are provided, to limit its privilege level. Default: none, aiCache

runs as superuser (root) - not recommended. Make sure specified user

and group exist in /etc/passwd and /etc/group files.

num_files 128000 As an alternative to running a "ulimit -n NNNN" command before

starting aiCache, you can let aiCache set it its own limit on max

number of open files. Default: not set . aiCache warns if you set this

number lower than 2000 .

work_dir /usr/local/ aicache Specifies aiCache working directory that aiCache chdir()s to after

startup.

Default: whatever directory aicache binary is started from.

alert_dir /usr/local/aicache/alerts Specifies directory that aiCache uses to spool alerts files to (see

aiCache V 6.291

 User Guide
www.aiCache.com

47

Get your life backÊ
É 2001-2013 aiCache, Inc .

section on Alerting).

Default: /usr/local/aicache/alerts

pid_file /var/run/aicache.pid When set, aiCache will write it's PID to the specified file, upon

startup. Optional. Make sure aiCache user can write to this file.

cfg_version 03102010-001 When set, aiCache will report this in both Web and CLI statistics

screen, to assist in ascertaining what version of configuration file is

presently in effect.

logdirectory /var/log/www Specifies directory where log files reside

Required. Default: none . More Information here.

stay_up_on_write_error When set, server will continue to service requests even when it runs

out of space in log partition (directory). Default: aiCache terminates

on write errors .

logtype extended Specifies access log format. Choose between ñextendedò and ñapacheò

Default: extended More Information here.

accesslog access Name of access log file. Default: access

errorlog error Name of error log file. Default: error

log_healthcheck When specified, health check requests will be logged in access log

file. Default: no health check logging

logging dedicated When specified, each accelerated website logs into its own, dedicated

access log file, named access-hostname. Default: all of the website log

into a single shared access file. More Information here.

drop_referrer When specified, aiCache will not process and/or log Referrer header

value. We recommend having drop_referrer configured - it will reduce

the size of the access log files rather significantly. If you need to

collect Referrer field for log crunching, do not specify this setting.

Default: Referrer is collected and logged.

drop_user_agent When specified, aiCache will not process and/or log User-Agent

header value. We recommend having it turned on - it will reduce the

size of the access log files very significantly. Default: User-Agent is

collected and logged

dump_bad_req When specified, aiCache writes bodies of bad requests to files named

/tmp/bad_req.PID.NNNN. No more that 120 bad request bodies can be

written out per minutes to avoid resource over-utilization. Can be used

to troubleshoot bad requests. Default: bad request bodies are not

written out.

logstats When specified, global statistics will be written out to a dedicated

aiCache V 6.291

 User Guide
www.aiCache.com

48

Get your life backÊ
É 2001-2013 aiCache, Inc .

statistic log fi le every 5 seconds. Default: no statistics logging

debug_clip 1.2.3.4 When set, aiCache captures and writes out both requests and responses

(up to 32KB of) with matching client IPs - after they are sent

to/received from origin server. Can be a helpful troubleshooting tool.

maxclientidletime When specified, a valid request header must be obtained from client

within this many seconds. Default: 5 seconds

maxclientbodytime When specified, a valid and complete request must be obtained from

client within this many seconds. Default: 60 seconds.
4

max_post_sig_size 128 When specified and/or set to a value and POST caching is enabled,

only POST bodies smaller than are used as part of response signature.

Default: 256 bytes. See POST caching section for more information

max_log_file_size 100000000 When specified, size-based log file rotation is enabled. Access log file

will be auto-rotated when it grows above this size (bytes). Default: no

size-based log file rotation

maxkeepalivereq 10 When specified, client Keep-Alive connections are allowed to serve

up to this number of requests. Can be set at both global and WS levels,

latter overriding former. Default: 20

maxkeepalivetime 10 When specified, client Keep-Alive connections are allowed to stay

connected in idle state up to this number of seconds. Really busy web

sites commonly set this at 5 seconds. Can be set at both global and

WS levels, latter overriding former. Default: 10

max_os_resp_time 4 When specified, responses from origin servers must complete within

set amount of seconds. Default: 10.

max_os_ka_connections 2 When specified, enables HTTPS keep-alive connections to origin

servers and limits number of such connections to the specified

number, per origin server. Default: OS KA connections are disabled.

Global setting can be overidden at website level.

max_os_ka_req 20 When specified, keep-alive connections to origin servers are limited

to serving no more than specified number of requests before being

closed. Default: 10 . Global setting can be overidden at website level.

Set to 0 to disable keep-alive connections to origin servers.

4
 It is not a good idea to use Accelerator as front-end for large user downloads (say 10MB+) - as it will consume too much RAM.

60 sec default value is more than adequate for a typical form data (few tens of KB at most).

aiCache V 6.291

 User Guide
www.aiCache.com

49

Get your life backÊ
É 2001-2013 aiCache, Inc .

max_os_ka_time 5 When specified, keep alive connections to origin servers are limited

in to total duration (from open till final use and close) to no more than

this amount of seconds. Default: 5 . Global setting can be overidden at

website level.

client_linger 0 When specified, client connection SO_LINGER option is enabled

and set to the specified number. Default: client SO_LINGER is

disabled. Please make sure you understand the side effects before

enabling this option.

os_linger 0 When specified, origin server connection SO_LINGER option is

enabled and set to the specified number. Default: origin server

SO_LINGER is disabled. Please make sure you understand the side

effects before enabling this option. See "Have mercy upon thy origin

servers."

client_tcp_no_delay When specified, TCP_NODELAY option is set for client

connections. It has effect of turning off Nagle TCP algorithm.

Default: TCP_NODELAY is not applied.

os_tcp_no_delay When specified, TCP_NODELAY option is set for origin server

connections. It has effect of turning off Nagle TCP algorithm. Default:

TCP_NODELAY is not applied.

shutdown_grace_wait 5

When executing graceful shutdown, aiCache stops accepting new

connections for this many seconds, while allowing existing requests

finish processing, and then exits. Default: 5

refresh_website When set, for 2nd and following requests that aiCache obtains from a

keep-alive client connection, it rematches Host: header to obtain

matching website. Used to address broken load balancing setups.

Default: off (not specified)

snmp_stat_interval 5 When set, aiCache generates SNMP statistics file every this many

seconds. Must be set for SNMP integration to work. Default: off,

SNMP integration is disabled . SNMP Monitoring.

silent_400 When set, aiCache does not send error responses in response to

invalid/malformed/oversized requests. Instead it drops such client

connections silently and instantly. Default: off, error responses are

sent in response to malformed/oversized requests.

orig_err_resp Specifies how aiCache treats error status codes it receives from origin

servers in response to cacheable requests. When set, original responses

are delivered, when not set (default), aiCache overwrites all error

responses with status > 400, except 401,404 and 407, with its own,

aiCache V 6.291

 User Guide
www.aiCache.com

50

Get your life backÊ
É 2001-2013 aiCache, Inc .

abbreviated versions. This is done to preserve network bandwidth.

stat_url aicachestat

table_stat_url aicachestattable

These are URLs you use to get access to aiCache's self-refreshing web

pages that contains aiCache global or website-specific statistics. You

may set it so that only people that know it can see your statistics. See

"Self-refreshing Web monitor" section for more information on this

feature. Default: accelstattext, accelstattable Self-refreshing Web

Monitor

pend_url aicachepend This is URL you use to get access to aiCache's self-refreshing web

page that contains aiCache global or website-specific pending

requests. You may set it so that only people that know it can see your

statistics. See "Self-refreshing Web monitor" section for more

information on this feature. Default: accelpendtext Self-refreshing

Web Monitor

alert_email support@a.b.c When set, automatic global alerts are generated and sent to this email

address . Default: not provided, no global alerts are generated. Please

note that for alerting to work, you must enable statistics logging via

logstats directive. Websites can have their own alerting set, acting on

different set of criteria and emailing to different email addresses (see

website section). Please see a dedicated chapter on automated email

alerting feature of aiCache.

alert_bad_req_sec 20 When set, an alert is generated when number of bad RPS exceeds this

number . Default: not set. Please see a dedicated chapter on

automated email alerting feature of aiCache.

alert_max_cache_entries 20000 When set, an alert is generated when number of cached responses

exceeds this number . Default: not set

alert_client_conn_max NNN When set, an alert is generated when total number of client

connections exceeds this number . Default: not set

alert_client_conn_min NNN When set, an alert is generated when total number of client

connections is less than this number . Default: not set

alert_os_conn_max NNN When set, an alert is generated when total number of origin server

connections exceeds this number . Default: not set

alert_bad_resp_sec NNN When set, an alert is generated when total number of failed responses

from origin servers exceeds this number . Default: not set

alert_req_sec_max NNN When set, an alert is generated when number of RPS exceeds this

number . Default: not set

alert_req_sec_min NNN When set, an alert is generated when number of RPS is less than this

aiCache V 6.291

 User Guide
www.aiCache.com

51

Get your life backÊ
É 2001-2013 aiCache, Inc .

number . Default: not set

alert_os_rt NNN When set, an alert is generated when origin server response time is

more than this number (milliseconds) . Default: not set

alert_humane When specified, no alerts are generated between midnight and 7am

local time.

alert_exclude_pat When specified, current date/time is compared to the specified

patterns and if match is found, no alerts are generated.

mail_path (obsolete!!!) Obsolete! Used for email alerting. Points to mail binary. Default:

/usr/bin/mail

chunked_resp_size_hint 33000 When receiving origin server responses with Transfer-Encoding:

Chunked, aiCache sets receiving buffer to this number of bytes. It is

done to improve performance at cost of possible memory over-

allocation. Default: ~33 000 B (32KB)

x_ttl_header X-aiCache-TTL When set, aiCache returns response's TTL to clients via custom HTTP

header that is specified as the parameter (X-aiCache-TTL in this

example). Value of 0 is returned for non-cacheable responses.

Default: not set, response's TTL is not inserted into the response

header.

x_os_header X-aiCache-OS When set, aiCache returns origin server IP and port number to clients

via custom HTTP header that is specified as the parameter (X-

aiCache-OS in this example). Default: not set, origin server IP and

port number are not returned as part of response header.

peer 1.2.3.4

peer

peer

Identifies a peer - another aiCache server that accelerates same web

site. Default: not set, no peers are defined. For more information about

peers please read Clustering aiCache.

peer_prefix mysecretpeerprefix Peer command prefix. For more information about peers please read

Clustering aiCache. Default: xaicachepeer .

cache_cleaner_interval N

hard_cache_cleaner_interval M

Set cleaner run intervals, in seconds. See chapter on aiCache Cache

Cleaner Logic.

keep_http10 [on|off] Set it to enable/disable aiCache from overwriting HTTP/1.0 requests

to HTTP/1.1. When set to "off", aiCache rewrites the minor version of

HTTP requests - which might speed up processing of responses from

aiCache V 6.291

 User Guide
www.aiCache.com

52

Get your life backÊ
É 2001-2013 aiCache, Inc .

origin servers. Default: set, HTTP/1.0 is not rewritten as HTTP/1.1

hdr_clip X -Forwarded-For When set, aiCache will parses forwarded Client IP from request's

HTTP header and log it in the access log file . See dedicated section

on the subject. Default: not set, no processing takes place.

refresh_hdr_clip When set, aiCache re-obtains (re-parses-out) forwarded Client IP for

each request within a Keep-Alive connection. See dedicated section on

parsing of forwarded Client IP for more information. Default: not set,

assuming aiCache is configured to process forwarded Client IPs, it

will only do so for first request within a Keep-Alive client connection

and reuse it when logging subsequent requests within the same Keep-

Alive client connection.

enable_http10_gzip [on|off]

enable_http10_keepalive

These allow to override default treatment of HTTP/1.0 request.

Enabling either one is risky. See dedicated chapter on HTTP/1.0

requests.

fallback_4xx When set, aiCache tries to serve stale cached response, if one is

available, upon receiving response with 4xx error code from Origin

Server. Default: 4xx returned back, instead of falling back to

previously cached response.

count_4xx_as_bad When set, aiCache counts 4xx responses from origin servers as bad

(same way as 5xx responses are counted). This way you can

observe/monitor and alert on 4xx responses. Default: 4xx responses

are nod added to bad response stats.

disable_host_normalization When set, aiCache preserves the original reques't Host header case and

then performs case-sensitive match to defined hostnames, cnames

and wildcards. Default: host matching is case-insensitive.

debug_request_cookie When set and aiCache running with "-D" command line option,

diagnostic messages are printed out as aiCache parses out request

cookies. Use it when troubleshooting cookie-related issues. Default:

off.

debug_response_cookie When set and aiCache running with "-D" command line option,

diagnostic messages are printed out as aiCache parses out response

cookies. Use it when troubleshooting cookie-related issues. Default:

off.

debug_ws_match When set , aiCache logs requestôs Host header value when it cannot be

matched to any of the defined websites. Default: off.

max_sig_size When request's cache signature (minus possible sig_cookie and

sig_ua) exceeds this value, request is declared non-cacheable. Default:

1024 characters.

aiCache V 6.291

 User Guide
www.aiCache.com

53

Get your life backÊ
É 2001-2013 aiCache, Inc .

decimate_log 100 When set, aiCache decimates request logging by the specified factor

(for example, when set to 100, every 100th request is logged). Default:

log decimation is disabled, every request is logged

decimate_bad_log 100 When set, aiCache decimates request logging by the specified factor

(for example, when set to 100, every 100th request is logged) ï for

response codes of 400 and higher. Default: log decimation is disabled,

every request is logged

aiCache V 6.291

 User Guide
www.aiCache.com

54

Get your life backÊ
É 2001-2013 aiCache, Inc .

Website-specific settings.

We continue with ñwebsite" settings. Such settings are applicable to a particular website, as opposed to the

global settings. Some of the parameters defined in the website section might override the global settings of

same name. Some website-level settings always, in turn, might be overridden by pattern-level settings of same

name.

website Begins website (as opposed to global) section of the configuration

file. Required. Default: none

hostname www.acmenews.com Value of Host: HTTP request header that matches this website.

Required, at least one hostname section must provided. Default:

none

Please note aiCache matches incoming request's Host header to

hostname in case-insensitive manner.

logstats When set, per-website statistics is collected and written out to a

dedicated file named ñstats-hostnameò in log directory. Default:

per-website stats gathering is turned off. Please note that for

alerting to work, you must enable statistic logging via logstats

directive.

min_gzip_size 4000 When specified, responses with Content-Type of text/*** and

applcation/x-javascript and of size equal or larger than the specified

number of bytes are compressed-on-the-fly.

Default: on-the-fly compression is disabled.

fallback

When set, if a refresh of a cached response fails, the older

(previous) cached version, if one is available, is served back to the

clients (as opposed to sending of an error response). Default:

fallback is disabled; error response is served when refresh fails. See

"Forced fallback" for an alternative solution.

httpheader hdr_name hdr_value

httpheader

httpheader

These, in addition to original request line, form request header for

cacheable HTTP/1.1 requests. Use example configuration file as

guidance for what headers to configure. The values might contain

spaces. You can add an arbitrary header to cacheable requests - this

can be used to pre-authorize requests when Basic authentication is

used, etc. Optional.

httpheader0 hdr_name hdr_value

httpheader0

httpheader0......

These, in addition to original request line, form request header for

cacheable HTTP/1.0. requests. Use example configuration file as

guidance for what headers to configure. The values might contain

spaces. You can add an arbitrary header to cacheable requests - this

can be used to pre-authorize requests when Basic authentication is

aiCache V 6.291

 User Guide
www.aiCache.com

55

Get your life backÊ
É 2001-2013 aiCache, Inc .

used, etc. Optional

healthcheck url match NN MM

When specified, each origin server for this website is sent a health

check request for ñurlò, response is matched for ñmatchò.

Such HC requests are sent every NN seconds and the response must

be obtained within MM seconds. In case of error (no response

within MM or response data that doesnôt match ñmatchò string)

origin server is temporarily disabled. Default: origin server health

checking is disabled

disable_os_tag_hc

When specified, tagged origin servers are not health-checked.

Default: all origin servers health checked when healtcheck_url is

defined.

conn_close When specified, client Keep-Alive is disabled for this website.

Default: client Keep-Alive is enabled.

origin 127.0.0.1 8888 1

origin static.acme.com 80

Specifies an origin server: DNS name or IP address, optional port

number and optional origin server tag. Required. Default: none . At

least one origin server must be specified for each accelerated

website.

max_log_file_size Enables size-based log file rotation. Same meaning as in global

section, but applied to this particular website. Default: size-based

log rotation is disabled.

maxkeepalivereq 10 When specified, client Keep-Alive connections are allowed to serve

up to this number of requests. Can be set at both global and WS

levels, latter overriding former. Default: 20

decimate_log 100 When set, aiCache decimates request logging for this website by

the specified factor (for example, when set to 100, every 100th

request is logged). Default: log decimation is disabled, every

request is logged

silent_400 When set, aiCache does not send error responses in response to

invalid/malformed/oversized requests. Instead it drops such client

connections silently and instantly. Default: off, error responses are

sent in response to malformed/oversized requests.

decimate_bad_log 100 When set, aiCache decimates request logging for this website by

the specified factor (for example, when set to 100, every 100th

request is logged) ï for response codes of 400 and higher. Default:

log decimation is disabled, every request is logged

aiCache V 6.291

 User Guide
www.aiCache.com

56

Get your life backÊ
É 2001-2013 aiCache, Inc .

forward_clip [header name] When set, aiCache forwards Client IP addresses to origin server, as

a request header. Default: CLIP is not forwarded

os_persist When set, aiCache pins/persists clients to origin servers. See a

dedicated section on Client-OS-Persistence. Default: OS

persistence is disabled, request are fanned out across all of

available origin servers in accordance with configured load

balancing metric and os tags. Not recommended for use with DNS-

specified origin servers.

no_retry When set, aiCache doesn't retry failed requests. Default: total of 3

attempts are made to obtain a good response in case of GET

requests, POST requests are not retried

cache_auth_req When set, aiCache allows caching of responses to requests with

Authorization headers. In other words, presence of Authorization

header in request doesn't reset TTL to 0. Default: such

requests/responses are not cacheable, TTL is always set to 0.

sig_cookie When set, aiCache adds value of HTTP request's matching cookie

to the signature of cached response. This can be used to cache and

serve different responses, for the same URL, based on a cookie

value. You can also set this at pattern level, latter overriding

former. Multiple sig_cookie could be specified. Default: cookies

are not used in cached response's signature.

sig_header When set, aiCache adds value of HTTP request's matching header

to the signature of cached response. This can be used to cache and

serve different responses, for the same URL, based on a header

value. You can also set this at pattern level. Default: header values

are not used in cached response's signature.

sig_language When set, aiCache adds value of HTTP request's Accept-Language

header to the signature of cached response. This can be used to

cache and serve different responses, for the same URL, based on

user's language preference. Default: Accept-Language header is not

used in cached response's signature.

sig_ua When set, aiCache adds value of HTTP request's User-Agent

header to the signature of cached response. This feature can be used

to serve different responses based on browser used by the client.

Default: UA header is not used in cached response's signature.

ua_sig_rewr When set, aiCache rewrites/reduces value of HTTP request's User

Agent string and add it to the signature of cached response. This

feature can be used to accommodate for mobile clients/devices.

Default: UA is not modified/used in cached response's signature.

aiCache V 6.291

 User Guide
www.aiCache.com

57

Get your life backÊ
É 2001-2013 aiCache, Inc .

ignore_case When set, aiCache makes signatures of cached responses for this

website case-insensitive , converting them to lower case . Default:

signatures are case sensitive

max_os_resp_time 4 When specified, responses from origin servers must complete

within set amount of seconds. Overrides global setting of the same

name. Default: 10.

max_url_length NNN When set, requests with URL length exceeding this limit are

declined (with 414 or silently dropped if silent_400 is set) .

Default: no limit is emposed.

ignore_no_cache When specified, X-nocache headers from origin servers are

ignored, requests are not retried.

sig_ignore_body When set, aiCache doesn't append cacheable POST request's body

to the request's signature . Applied to all requests to this website.

cname bbs.acmenews.com

cname account.acmenews.com

Defines one or more of alternative names for this website - as a

convenience measure . Do not abuse it - sometimes it is better to

create a whole new, different website - as then you'd have better

control over it and better view of its traffic.

Please note aiCache matches incoming request's Host header to

cname(s) in case-insensitive manner.

wildcard media

wildcard images

Defines one or more of wildcard alternative names for this website

- as a convenience measure . While cnames (above) are matched in

exact-match fashion, wildcards are matched in partial manner . So

wildcard of media would match media01.acme.com

mediafarm.acme.com , server01.media.acme.com and so on.

Please note aiCache matches incoming request's Host header to

wildcard (s) in case-insensitive manner.

cc_obey_ttl When set, aiCache wont clear out fresh cached responses. Default:

CC cleans out fresh cached responsewhen there was no access to it

since previous cache cleaner run.

cc_disable When set, Cache Cleaner logic is disabled for this website.

Default: CC logic is enabled, subject to cc_obey_ttl.

cc_inactivity_interval Cache cleaner can remove cached responses that saw no access in

this many seconds. Default: set to same value as cache cleaner

interval

send_cc_no_cache When set, aiCache sends "Cache-Control: no-cache" HTTP header

in responses to requests with negative TTLs or when origin server

response indicates that response should not be cached.

aiCache V 6.291

 User Guide
www.aiCache.com

58

Get your life backÊ
É 2001-2013 aiCache, Inc .

send_cc_cache or

add_cache_control

When set, aiCache sends "Cache-Control: max-age=NNN" HTTP

header in responses to requests with positive TTLs.

404_redirect_location When set, aiCache redirects to this location when it receives 404

responses from origin servers.

500_redirect_location When set, aiCache redirects to this location when it receives 500+

responses from origin servers and/or when aiCache generates its

own 500 response.

ignore_ims

When set, aiCache disregards conditional If-Modified-Since

header in requests . No 304 responses are generated. Default: IMS

is processed and 304 responses are generated when appropriate.

max_os_ka_connections 2 When specified, enables keep-alive connections to origin servers

and limits number of such connections to the set number, per origin

server. Default: OS KA connections are disabled. Overrides global

setting .

max_os_ka_req 20 When specified, keep-alive connections to origin servers are

limited to serving no more than set number of requests before being

closed. Default: 10 . Overrides global setting . Set to 0 to disable

keep-alive connections to origin servers

max_os_ka_time 5 When specified, keep alive connections to origin servers are

limited in to total duration (from open till final use and close) to no

more than this amount of seconds. Default: 5 . Overrides global

setting .

prefetch_url

/slowGetAdCall?page=home&area=top

100 gzip

prefetch_http_header AAA BBB

prefetch_conn_close

Pre-fetch response directive. See a dedicated section on response

prefetching/preloading later in this guide.

alert_email support@a.b.c When set, automatic website-specific alerts are generated and sent

to this email address . Default: not set, no website alerts are

generated and all the alert setting below have no effect. Please note

that for alerting to work, you must enable statistic logging via

logstats website-level directive.

alert_max_cache_entries 20000 When set, an alert is generated when number of cached responses

exceeds this number . Default: not set

alert_bad_resp_sec When set, an alert is generated when total number of failed

responses from origin servers exceeds this number . Default: not set

aiCache V 6.291

 User Guide
www.aiCache.com

59

Get your life backÊ
É 2001-2013 aiCache, Inc .

alert_max_bad_os When set, an alert is generated when total number of failed origin

servers exceeds this number . Default: set to 0 so even failure of a

single OS causes an alert to be generated.

alert_req_sec_max When set, an alert is generated when number of RPS exceeds this

number . Default: not set

alert_req_sec_min When set, an alert is generated when number of RPS is less than

this number . Default: not set

alert_os_rt When set, an alert is generated when origin server response time is

more than this number (milliseconds) . Default: not set

alert_client_conn_max NNN When set, an alert is generated when total number of client

connections exceeds this number . Default: not set

alert_client_conn_min NNN When set, an alert is generated when total number of client

connections is less than this number . Default: not set

alert_os_conn_max NNN When set, an alert is generated when total number of origin server

connections exceeds this number . Default: not set

alert_humane When specified, no alerts are generated between midnight and 7am

local time.

alert_exclude_pat When specified, current date/time is compared to the specified

patterns and if match is found, no alerts are generated.

leastconn When specified, aiCache uses least connections load balancing

metric for this website. Please see a dedicated chapter on available

load balancing metric (round robin, weighted distribution and least

connections)

enable_https_os_ka When set, aiCache enables HTTPS OS keep-alive connections. By

default HTTPS OS keep-alive connections are disabled, even when

max_os_ka_connections global setting is set. Please test before

enabling in production.

fallback_4xx When set, aiCache tries to serve stale cached response, if one is

available, upon receiving response with 4xx error code from origin

servers. Overrides global setting of same name. Default: 4xx

response is served to the client, instead of falling back to previously

cached response.

count_4xx_as_bad When set, aiCache counts 4xx responses from origin servers as bad

(same way as 5xx responses are counted). This way you can

aiCache V 6.291

 User Guide
www.aiCache.com

60

Get your life backÊ
É 2001-2013 aiCache, Inc .

observe/monitor and alert on 4xx responses. Overrides global

setting of same name. Default: 4xx responses are nod added to bad

response stats.

cache_4xx When specified, 4xx (except 400) responses are cached in

accordance with TTL of matching request pattern. Default: 4xx

responses are not cached.

ua_keep_pattern Windows/sXP

[keep|redirect]

ua_pattern Windows/sXP

[keep | redirect]

.......

Requests with matching User-Agent string are accepted by aiCache

for regular processing, while non-matching one are directed. See

section on UA-based redirection for more information. Default: no

UA-driven redirection takes place.

ua_ redirect_host Specifies the host to redirect non-matching UA requests to .

Default: no UA-driven redirection takes place. However this setting

must be provided if ua_keep_pattern is specified.

ua_keep_cookie [cookie name] Configures aiCache to issue a cookie to streamline UA-driven

redirection processing. Default: cookie name is set to xaikeeperua.

Set to "disable" to disable UA cookie processing.

ua_redirect_host_only Configures aiCache not to send the original URL in the redirection

response. Default: original URL is appended.

ua_keep_length
Configures aiCache to keep requests whose User-Agent headers are

shorter than certain length. To configure this, set ua_keep_length

value at website level. Default: disabled.

recheck_ua_keep_cookie See section on UA-based redirection for more information.

Pattern settings.

Within the website section is located the pattern section, containing definitions of what constitutes

cacheable or non-cacheable content. We dedicate a separate table to explanation of the parameters in this

section. Some settings in the pattern section may override both global and website-level settings of same name.

pattern pat exact|simple|regexp TTL

[ignore_query] [no_log]

Identifies new pattern: matches to ñpatò, perform "exact", ñsimpleò or

"regexp" matching . Time-To-Live (caching time) is set to TTL .

aiCache V 6.291

 User Guide
www.aiCache.com

61

Get your life backÊ
É 2001-2013 aiCache, Inc .

All of the above must be in a single

line.

TTL is specified in seconds or, to simplify, you can end the TTL's

value with "m" for minutes, "h" for hours or "d" for days.

Specify negative TTL to disallow downstream caching.

When ignore_query is specified, query parameters are ignored when

forming cached response signature (see separate explanation later in

this document).

When no_log is specified, matching responses are not logged in

access log file (log suppression).

Default: query is not ignored and is used as part of cache signature;

requests/responses are logged

ignoreparam param1

[ignoreparam param2]

.....

Identified parameter (named param1) is removed from cached

responseôs signature (see separate explanation later in this document).

Multiple ignoreparam lines can be provided, each with a different

parameter name.

Default: no parameter is removed from request's query string.

param_partial_match When specified, ignoreparam parameter name matching is partial. Use

it with care, but it has potential to speed up matching and removal of

ignoreparams. You can also use it to remove parameter that have

semi-random names with a common prefix.Default: ingoreparams are

matched by exact match.

request_type both Can be set to ñgetò, ñpostò or "both". Default: pattern is matched to

GET requests only, POST requests are not matched by default.

0ttl_cookie customer_id When specified, presence of a cookie with the specified name in a

request will disable caching of the request, even when pattern match

indicates non-0 TTL. More than one can be specified.

Default: caching-busting cookies are ignored, TTL is determined by

pattern matching alone.

0ttl_cookie_pat SESS.+= When specified, presence of a matching pattern in requestôs Cookie

header will disable caching of the request, even when pattern match

indicates non-0 TTL. More than one can be specified.

Default: caching-busting cookie patterns are ignored, TTL is

determined by pattern matching alone.

pass_cookie cookiename

[pass_cookie cookiename2]

.....

When specified, cookies with the specified names are stored in the

cached response (allowed to pass-through from origin server to cached

responses).

Default: cached responses never contain Set-Cookies, these are always

filtered out, even when origin server responses have Set-Cookie

aiCache V 6.291

 User Guide
www.aiCache.com

62

Get your life backÊ
É 2001-2013 aiCache, Inc .

headers.

redirect_location

http://promo.acme.com

When specified, matching requests receive a 302 redirect response,

with the specified location provided in Location: header. Default:

redirect is disabled

redirect_5xx When specified, matching requests that result in 5xx error during

processing, receive a 302 redirect response, with the specified location

provided in Location: header. Overrides website-level error redirects.

Default: redirect_5xx is disabled

redirect_4xx When specified, matching requests that result in 4xx error during

processing, receive a 302 redirect response, with the specified location

provided in Location: header. Overrides website-level error redirects.

Default: redirect_4xx is disabled

os_tag tag_number When specified, matching requests are to be filled only from origin

servers that have matching origin server tag . Default: origin server

tagging is disabled, all origin servers are eligible. Tag number must be

non-zero. There must be an at least one origin server defined with

matching tag, aiCache does not enforce this check. Tag_number must

be less than 254.

decimate_os_tag tag_number When specified, matching requests are to be filled, in decimated

fashion, only from origin servers that have matching origin server tag

For example, when set to 10, every tenth request will be filled from an

OS with matching OS Tag, all other matching requests will be filled

from ñregularò OS. Default: tagged decimation is disabled.

block When specified, matching requests receive a 403 Forbidden response.

Default: block is disabled

label A way to assign a descriptive label to pattern. The label will be

displayed in the pattern-level statistics display and made available via

SNMP. Default: no label

drop When specified, matching requests are silently and immediately

dropped, without any error response being sent to requesting client.

Default: drop is disabled

ua_redirect Windows/sCE

http://mobile.acmenews.com

User-Agent-based redirection rules. When the regexp pattern matches

User-Agent HTTP header, client browser is redirected to

http://mobile.acmenews.com

The match pattern must be in regular expression format (this is done

to accommodate for possible spaces in User Agent strings).

fallback When specified, matching requests are served stale cached response

aiCache V 6.291

 User Guide
www.aiCache.com

63

Get your life backÊ
É 2001-2013 aiCache, Inc .

(if one is available) when refresh of a cached response fails. Default:

aiCache serves error response when refresh fails. Please see "forced

fallback mode" for an alternative way to serve content when origin

servers are down.

match_http_only Pattern wonôt match unless client connection is HTTP.

match_https_only Pattern wonôt match unless client connection is HTTPS.

match_min_url_length Pattern wonôt match unless URL length at least this long. Default: not

set.

match_max_url_length Pattern wonôt match unless URL length is smaller than this value.

Default: not set.

add_body_url_length Length of requestôs body, if any, is added to the url length for the

purpose of matching to match_min_url_length and

match_max_url_length . Default: not set, request body is not

accounted for in comparing to min and max URL length.

rewrite from_pattern to_string When specified, matching requests will have their URLs rewritten

and possibly redirected. from_pattern is regexp based. to_string can

use backreferences - see dedicated section on URL rewriting and

redirection for more information.

rewrite_http_only

rewrite_https_only

When specified, rewrite is performed only for matching connection

type, HTTP or HTTPS. Can be used to rewrite from HTTP to HTTPS

and vice-versa, without causing a rewrite loop. Alternatively, you can

use match_http_only or match_https_only pattern-level settings (see

above).

conn_close When specified, client connection is closed after serving of matching

requests . Use it to reduce number of open connections when you

know you serve "one-timer" requests. Default: unless Connection:

close is specified in request, connection is re-used in Keep-Alive

fashion (more requests/response are allowed to be served over such

connections).

retry_min_resp_size

retry_max_resp_size

When specified, responses to matching patterns are checked to see if

response size is less than min or larger than max setting. If it is ,

aiCache will retry the request up to 3 times trying to obtain a properly-

sized response. Should all 3 attempts fail, the failing response is

returned as-is, unless a previous , stale, cached response is available -

in which case the stale response in served instead. Default: no size

checks are enforced on response bodies. See "Forcing Retries" section

later in this document for more information on this feature.

aiCache V 6.291

 User Guide
www.aiCache.com

64

Get your life backÊ
É 2001-2013 aiCache, Inc .

no_retry_min_resp_size

no_retry_max_resp_size

When specified, responses to matching patterns are checked to see if

response size is less than min or larger than max setting. If it is , the

failing response is returned as-is, without retries, unless a previous ,

stale, cached response is available - in which case the stale response in

served instead. Default: no size checks are enforced on response

bodies. See "Forcing Retries" section later in this document for more

information on this feature.

ignore_case When set, aiCache makes signatures of matching cached responses

case-insensitive , converting them to lower case . Default: cache

signatures are case sensitive

max_os_resp_time 4 When specified, responses from origin servers, matching this request

pattern, must complete within set amount of seconds. Overrides

global and website setting of the same name. Default: 10.

max_url_length NNN When set, requests with URL length exceeding this limit are declined

(with 414 or silently dropped if silent_400 is set) Default: no limit is

emposed.

no_retry When set, aiCache doesn't attempt to retry failed requests. Default:

total of 3 attempts are made to obtain a good response, unless request

is of POST type. POST requests are not retried by default.

sig_ignore_body When set, aiCache doesn't append cacheable POST request's body to

the matching request's signature.

sig_language When set, aiCache adds value of HTTP request's Accept-Language

header to the signature of cached response. This can be used to cache

and serve different responses, for the same URL, based on user's

language preference. You can also set it at website level. Default:

Accept-Language header is not used in cached response's signature.

sig_cookie cookie_name When set, aiCache adds value of matching HTTP request's cookie to

the signature of cached response. This can be used to cache and serve

different responses, for the same URL, based on a cookie value. You

can also set this at webste level, but pattern-level setting takes

precedence. Multiple sig_cookie could be specified. Default: cookies

are not used in cached response's signature.

post_block When specified, POST requests that match this pattern are blocked

(with 403 response or silently and instantly dropped when silent_400

is set). Default: POST requests are not blocked. Make sure to enable

the pattern for POST matching via request_type both

post_drop When specified, POST requests that match this pattern are silently

aiCache V 6.291

 User Guide
www.aiCache.com

65

Get your life backÊ
É 2001-2013 aiCache, Inc .

and instantly dropped Default: POST requests are not dropped. Make

sure to enable the pattern for POST matching via request_type both

cache_4xx When specified, 4xx (except 400) responses are cached in

accordance with TTL of matching request pattern. Default: 4xx

responses are not cached. Overrides website-level setting of same

name.

bad_response When specified, responses to matching requests are reported as "bad"

- which fact is reported via Web, CLI and SNMP interfaces. It can also

be alerted on. Default: not set

error_stat_ignore When specified, 400+ and 500+ code responses to matching requests

are not added up to bad response statistics. Use to preclude known bad

requests from skewing up error statistics (such as requests for missing

favicon adding up to 404 error count). Default: not set

dump_req_resp When specified, matching request (up to 32KB of) and response (up

to 128KB of) are written out to /tmp directory, under

/tmp/pattern_req.dump.PID.CONN filename where PP is aiCache

process ID and CONN is connection number. Use connection number

to reference the request and response to entries in aiCache log file.

Useful it for debugging. Default: not set

send_200_resp When specified, matching requests will be replied to with an empty

status-200 response. This is useable for pattern-based alerting,

described later in this document.

ua_url_rewrite When specified, you can rewrite the request's URL based on the value

of the rewritten UA string. Available only in mobile-enabled version,

explained in detail later in this Guide. See ua_pattern setting

elsewhere in this Guide, for a different method of redirecting requests

based on the value of the original UA value.

geo_url_rewrite é. When specified, you can rewrite the request's URL based geo

targeting. See Geo Targeting section for more information

disable_gzip Disable compression for this pattern.

header_pattern name pattern TTL You can override patternôs regular TTL with a custom value, based on

a value of a response header. Default: not set

aiCache V 6.291

 User Guide
www.aiCache.com

66

Get your life backÊ
É 2001-2013 aiCache, Inc .

Listen Ports.

Within the global section may be located one or more of optional listen directives. These specify over what

IP addresses and ports aiCache accepts incoming connections. When no listen directives are provided, aiCache

attempts to accept connections on any local IP address, port 80 - the standard HTTP server port.

An arbitrary number of listen ports/IP addresses can be specified. If you specify an IP address different

from "*", the specified IP address must be configured on aiCache server - for example, as an interface's

primary or an alias IP address.

Here's an example configuration specifying 4 listening HTTP ports, from 80 to 83:

listen http * 80

listen http * 81

listen http * 82

listen http * 83

Normally, you'd configure aiCache with one or more of websites to accelerate. aiCache matches incoming

requests to a configured website by comparing request's Host header to configured website hostnames.

Alternatively, you can tell aiCache to shortcut such matching logic by specifying a website right in the listen

directive. aiCache must be able to resolve each of thusly specified websites to a valid configured website. For

example:

listen http * 80 www.acme.com

listen http * 81 images.acme.com

listen http * 82 news.acme.com

Instead of using a wildcard IP address of * (asterisk), you can specify particular IP addresses. For example,

let's say you have configured 4 different IP addresses on an aiCache server: 1.1.1.1, 1.1.1.2, 1.1.1.3, 1.1.1.4.

Exact method to configure a number of different IP addresses on a Linux server is outside of scope of this

guide, but you can use aliases or simply have a number of different network interfaces. Now you may specify

the following:

listen http 1.1.1.1 80 www.acme.com

listen http 1.1.1.2 80 images.acme.com

listen http 1.1.1.3 80 news.acme.com

listen http 1.1.1.4 80 news.acme.com

To configure aiCache for HTTPS, there's a tad more work to do. We go into details of HTTPS

configuration later in this guide, in "Configuring HTTPS" chapter. However, as far as https listen directive is

concerned, it looks much like the regular http listen directive, but it requires a few extra settings:

- Required certificate file name

- Required host's private key file name

- Optional list of ciphers you want to enable

aiCache V 6.291

 User Guide
www.aiCache.com

67

Get your life backÊ
É 2001-2013 aiCache, Inc .

For example, we configure aiCache for 2 HTTPS listen ports, specifying websites right in the listen

directive:

listen https 1.1.1.1 443 acme.cert acme.key AES256- SHA:RC4- MD5 login.acme.com

listen https 1.1.1.2 443 check.cert check.key ALL checkout.acme.com

Alternatively:

listen https * 443 acme.cert acme.key AES256- SHA:RC4- MD5

When you specify non-standard ports for either HTTP or HTTPS listening endpoints, you must have some

means of directing traffic to such non-standard ports without inconveniencing the end users. You cannot expect

them to go to your site as http://acme.com:8080 or https://logic.acme.com:444. Some form of load balancing

HW or SW solution in front of aiCache, can be used for such purpose.

aiCache is capable of serving a very large number of different websites off a single HTTP IP address and

listen port tuple. Situation is different with HTTPS, as aiCache ties a website certificate and a private key to

each HTTPS listen port. So if you must serve multiple HTTPS websites via a single aiCache instance, you will

require a number of IP addresses, one per HTTPS website. Alternatively, you might use wildcard certificates to

alleviate some of these restrictions. See dedicated HTTPS chapter for more information.

You can also specify a special admin listen port type. For example:

listen admin * 5001

listen admin 192.1.1.1 1234

The admin type ports only respond to special type requests (described later in this Guide) ï such as

webstats, peer requests and such. Admin ports do not match to any defined websites and can do not serve

ñregularò webpages/traffic. They exist only to serve special traffic and might come in handy in special

occasions when you want to create such special listen ports that are separate from regular ports.

Network performance and scalability considerations.

As you might already know, TCP/IP specification limits number of open network connection for any given

endpoint (an IP:port tuple) to about 64,000 connections. Should you ever require more than this many

simultaneously open connections, you must enable additional listen end points - specifying a different IP

address or port number (usual caveat emptor applies if you want to use a non-standard port number).

On a busy server you might also be required to modify the following OS-level settings:

- Increase system-wide number of max file descriptors

- Reduce TIME_WAIT interval

aiCache V 6.291

 User Guide
www.aiCache.com

68

Get your life backÊ
É 2001-2013 aiCache, Inc .

- Increase number of per-process open file descriptors

Due to aiCache's multiplexed IO architecture, it won't have difficulties maintaining very high numbers of

open connections - assuming you have proper amount of RAM in your servers and properly configure the OS to

support large number of open connections. So experiment with client keep-alive settings to have manageable

number of open connections while delivering maximum benefits to your clients. We have more to say about

keep-alive connections later in this Guide.

Likewise, should you find that you're fully saturating a single networking interface with HTTP or HTTPS

traffic, you might need to enable an additional network interface. Of course, you'd only find yourself in this

situation when you have very large egress capacity to the Internets. For example, if your hosting setup has 5

Gbps of Internet BW available, having 2 aiCache servers, each with a single gigabit interface, you won't be

able to fully use up (saturate) your uplink pipes and might need to add additional network interfaces to your

aiCache servers or buy additional aiCache servers. Alternatively, you might opt to go with 10Gbps interfaces on

your aiCache servers, some form of bonded NIC teaming etc.

CLI Server.

aiCache provides a built-in Command Line Interface (CLI) server. You can simply telnet to the CLI port

and issue a number of CLI commands. By default, CLI connections are accepted over any local interface (IP

address), but you can specify a particular IP address to force aiCache to accept connections only over certain

interfaces when more than one is enabled. Typically you would specify internal and/or trusted IP addresses for

this service to listen on. You can also bind CLI service to the ñloopbackò IP address: 127.0.0.1, so that CLI can

only be reached from the aiCache's host server itself.

It is prudent to make sure Admin CLI can only be reached from trusted systems ï having it open to the

whole Internet is probably not a very good idea. However, chances are your existing network setup is such that

this restriction is enforced by default.

For more information on CLI please see dedicated CLI section later in this document.

aiCache V 6.291

 User Guide
www.aiCache.com

69

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache handling of requests and responses, enforcing timeouts.

aiCache does itôs best to protect both the origin servers and the siteôs visitors. One of the facets of this

protection is enforcement of assorted timeouts. Specifically, aiCache expects visitors to provide a valid HTTP

request in reasonable (and configurable) amount of time. This way an attacker would not be able to just open a

large number of idle HTTP connections to aiCache.

Likewise, aiCache expects origin servers to deliver a valid HTTP response within reasonable (and

configurable) amount of time. This way, should origin server fail, aiCache can retry the request against a

different origin server or possibly serve a previous version of cached response etc. Otherwise, both aiCache and

most importantly, the visitor would just keep waiting on a bad origin server. Outside of inconveniencing the

visitor, such buildup of connections would normally have a detrimental impact on overall site infrastructure.

In the way of specifics, when it comes down to client requests, aiCache expects a valid request header to

arrive within 5 seconds (configurable via max_client_header_time globally and/or at website level). Next,

aiCache expects request body (ie a complete request) to arrive within 60 seconds (configurable via

max_client_body_time globally and/or at website level). Both values are overly generous and you should

consider reducing them. However, if your site allows clients to upload large files, consider increasing

max_client_body_time to better suit your needs.

When dealing with responses from origin servers, aiCache expects a complete and valid response to arrive

within 20 seconds (configurable via max_os_resp_time, globally, at website or pattern-level). This value

should work for most sites, but you might consider increasing it in case of slower origin servers. Likewise,

when you know that no response should take longer than 2 seconds, you might consider decreasing the value.

aiCache and large requests and/or response.

aiCache does itôs best to improve performance of your site by offloading connection handling from your

origin servers. One of the ways it goes about it is by completely consuming entire requests before forwarding

them to origin servers. Likewise, it completely consumes (buffers in RAM) entire response before forwarding it

to clients.

You can see that such RAM buffering might become ineffective in case of oversized requests or responses.

Most regular web sites have nothing to worry about, but if you allow large uploads or download, say in excess

of 20MB per, you should consider delegating these away from aiCache and onto dedicated subdomains, say

ul.acme.com. You also should explore deploying some form of BW management for such upload or download

domains.

aiCache V 6.291

 User Guide
www.aiCache.com

70

Get your life backÊ
É 2001-2013 aiCache, Inc .

Origin Servers.

Configuring Origin Servers.

aiCache acts as an intermediary between users/visitors on the Internet and your actual, a.k.a origin, web

servers. It is the origin servers that aiCache uses to obtain responses from. It is easy to see that aiCache has to

know how to get to the origin servers, for each configured website.

Origin servers can be specified via number IP addresses or DNS names. We highly recommend using

numeric IPs instead of DNS names. This way you can have more control of just where the origin traffic is sent,

eliminate a possible point of failure and remove possible DNS latency. You will also have more control over

configuration, for example, changing origin servers wonôt require modification of DNS data and waiting for the

changes to propagate.

When origin servers are configured via DNS names, you must assure aiCache server is properly configured

for DNS resolution. Usually it means setting up /etc/resolv.conf file with one or more of valid DNS

servers/resolvers.

In our example main configuration file origin servers are configured as follows:

origin 127.0.0.1 8888

origin 127.0.0.1 8889

origin 127.0.0.1 8890

origin or igin.acme.com 80

At least one origin server needs to be specified for each accelerated website. Same origin server can be

used in different websites ï using same name/IP and port number or different ones. In some cases, you might

choose to specify same origin server more than once even for a given website, if you want to have aiCache

drive proportionally more requests to it - but consider using weighted load balancing metric instead.

When more than one origin server is specified for a web site and unless configured otherwise, aiCache uses

these origin servers in a round-robin fashion, where each healthy server gets equal share of traffic. In the

example above, with 3 origin servers configured, each origin server receives one third of traffic. Other load-

balancing (distribution) metrics are available, including least connections and weighted distribution - we

describe them in the next section. Please note that we donôt recommend using least connections and weighted

distribution with origin servers that are specified by DNS name.

You can see the number of requests that each origin server has received and other important origin server

stats via Web, CLI or SNMP interfaces. If so configured, aiCache can also monitor health (status) of origin web

servers .

aiCache V 6.291

 User Guide
www.aiCache.com

71

Get your life backÊ
É 2001-2013 aiCache, Inc .

Load Balancing Metrics: round-robin, least connections and weighted.

Round-Robin.

As you know by now, simple round-robin is the default load balancing metric used by aiCache. When so

configured, each origin server gets share of traffic proportional to number of times it is specified as OS for a

given website. When each OS is only specified once, each OS gets equal share of traffic (1/3 of it, with 3 OS

specified as in example above).

 This is the metric we suggest you use when all of the origin servers (for a given website) are of about

same capacity and configuration and can cope with traffic on equal terms. In some cases, you might choose to

specify same origin server more than once for a given website, if you want to have aiCache drive proportionally

more requests to it - but you may consider using weighted load balancing metric instead.

Please note that aiCache does not support OS tags when configured for least connections or weighted load

balancing metrics. To employ OS tagging, you must use default, round-robin load balancing metric.

Least-Connections.

Instead of default round-robin load balancing metric, you can configure aiCache for least connections

metric, where next request is sent to origin server that is processing the fewest number of requests, at the

moment of decision making. This metric has potential to automatically load balance requests in a fair fashion,

when origin servers are of different capacity, build and configuration. To configure a given website for least

connection load balancing metric, specify

leastconn

in the respective website's section. When configured for least connections, number of outstanding

connections to each origin server are shown via Web interface and reported via SNMP.

Please note that we donôt recommend using least connections and weighted distribution with origin servers

that are specified by name.

Weighted.

And lastly, you can configure aiCache for weighted round-robin, when you manually specify the weight for

each origin server. The weight is specified as last numeric parameter in the origin configuration line - after

server port and server tag. Both server port (even if it is default port of 80) and server tag (even if you want to

have default tag of 0) must be specified, if you want to provide weight value - as otherwise aiCache won't know

which value is port, which is tag and which is weight.

Let's say you specify 3 origin servers, with weights of 10,20 and 30. It means that out of every 60 requests

(10+20+30), first server will get 10 of them, second 20 and third 30. Please note how in the example below we

aiCache V 6.291

 User Guide
www.aiCache.com

72

Get your life backÊ
É 2001-2013 aiCache, Inc .

have specified both the port numbers and the OS Tag of '0' for all three Origin Servers ! Both server port (even

if it is default port of 80) and server tag (even if you want to have default tag of 0) must be specified, if you

want to provide weight value - as otherwise aiCache won't know which value is port, which is tag and which is

weight.

Please note that we donôt recommend using least connections and weighted distribution with origin servers

that are specified by DNS name.

origin 127.0.0.1 8888 0 10

origin 127.0.0.1 8889 0 20

origin 127.0.0.1 8890 0 30

aiCache doesn't enforce any limit on the value of weight, but we suggest to keep it reasonable. aiCache

does its best to smooth out the flow of requests to weighted origin servers, but this approach has its limits when

significantly different weights are assigned to origin servers.

To reiterate, to setup weighted load balancing, all you need to do is to specify weights for each origin

server, there's no separate directive you need to provide outside of providing weights.

aiCache complains loudly and exits when a website is configured for both least connection and weighted

load balancing, as it is a fairly nonsensical configuration.

Please note that aiCache does not support OS tags when configured for least connections or weighted load

balancing metrics. To employ OS tagging, you must use default, round-robin load balancing metric.

aiCache processing of origin servers specified via DNS names.

aiCache has a special thread dedicated to out-of-band DNS resolution of DNS-defined origin servers. The

thread runs in the background and periodically resolves OS DNS names to numeric IPs via regular DNS

resolution. It is done so that aiCache is not burned with overhead of DNS resolution when it needs to access

origin servers ï such resolution occurs out-of-band.

You configure how frequently aiCache runs such DNS resolution, at per-website basis, via dns_interval

setting. Specified in seconds, the default value is 120 seconds (2 minutes).

Consider the following example:

website

hostname www.acme.com

dns_interval 600

é

origin origin.acme.com 80

Upon startup, aiCache resolves all and any DNS-defined origin servers. Assuming origin.acme.com has 5

DNS ñAò records defined, 5 OS will be defined, used and reported.

http://www.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

73

Get your life backÊ
É 2001-2013 aiCache, Inc .

Every 600 seconds (10 minutes) aiCache re-runs DNS resolution for this website, attempting to resolve

origin.acme.com to a list of DNS ñAò records. As long as the same 5 ñAò records are returned, there are no

changes to OS configuration that was established during the startup.

If an additional record is returned, it is added as an additional OS for www.acme.com. It is also reflected in

the aiCache error log file.

When a previously-defined ñAò record disappears, it is marked as ñDNS-disabledò and is not used in OS

capacity (no traffic is sent to it). However, the record of that OS is kept by aiCache ï so you can see its statistics

etc. It is also reflected in the aiCache error log file.

When a previously-disabled ñAò record re-appears, it is marked as ñDNS-enabledò and is set to again

receive its share of traffic. It is also reflected in the aiCache error log file.

aiCache also reports when a website has any DNS-defined OS. Time of last DNS resolution is also logged

and reported. All DNS-defined OS are reported likewise.

To assist in initial DNS setup, aiCache offers global debug_dns flag setting. When set, copious amounts

of DNS debug information are written out to aiCache error log file.

Clearly, for aiCache to be able to perform DNS lookups, DNS resolution must be properly configured on

the server (at the operating system level). While explaining such setup is outside of scope of this manual, most

of the time all you need to do is to modify /etc/resolv.conf to point to one or more of DNS servers.

Monitoring Health of origin Servers.

When configured so, aiCache periodically tries to retrieve a health-check URL from each origin server.

Upon success the content of the response body, if any, is optionally matched against health-check match string.

Please note that simple partial string match is performed, not the regular expression matching. Only when both

steps: retrieval of the response in set amount of time and content match, are successful, is the origin server

declared healthy to serve content.

If either action fails, the origin server is declared unfit to serve content and is not used by aiCache until it

passes a following health check. Origin server failing a health check and passing it after a failure are logged in

error log file, complete with time stamp and origin serverôs IP and port number. You can also configure aiCache

to alert via email whenever an origin server fails a health check - see "Alerting" section for more information.

Each website can be configured with its own health check URL and match string by placing health check

directive under the respective hostname directive. For example:

website

hostname www.acmenews.com

hea lthcheck / servertest.aspx good 30 10

In this example aiCache is configured to retrieve /servertest.aspx URL from each origin server defined

for www.acmenews.com, every 30 seconds. The returned content is matched against ñgoodò. Origin servers are

http://www.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

74

Get your life backÊ
É 2001-2013 aiCache, Inc .

allowed a fairly generous 10 seconds to respond to the query. Should an origin server fail to return matching

content in the allowed amount of time, it is declared down - which fact is logged in the error log file. 30

seconds later, the same sequence of steps is attempted again. Should a failed origin server pass the check this

time, it is declared healthy (which fact is logged in the error log file) and put back into origin server "rotation"

and is allowed to serve content again .

The URL you specify for health check and the match string are important. Ideally, you'd choose a URL that

executes some logic that tests that all of the components in the chain: the origin web server, the application

server(s), if any, and the backend (databases and similar), if any, are operational and healthy. The URL could be

an actual production, public URL that is normally accessed by visitors or custom coded logic dedicated to

health checking only. For example, such health check logic could connect to a DB server, execute a query and

produce output containing "good" when all of the steps complete successfully.

The whole response body is matched to see if it contains the specified string anywhere within it. If you

don't want to match the response body to any string, specify the match string as "HTTP" or "NULL" and

aiCache won't perform any matching. This is a poor choice however, and it is much better to have a more

meaningful testing and matching as described above.

When executing a health check request, aiCache generates a HTTP/1.1 request - complete with Host header

set to website's hostname. It means that origin servers must be able/configured to resolve that hostname to a

valid configured website.

aiCache reports the number of health checks that each origin server has passed and failed, via all 3

interfaces: Web, CLI and SNMP. Review this statistic as it might reveal misconfigured and/or underperforming

servers - these will normally exhibit higher failed health check counts.

By default, health checking is disabled, but we strongly recommend enabling this feature. This way,

aiCache detects origin server failures and attempts to shield client requests from adverse effects caused by failed

servers.

For example, letôs imagine an origin server that is not responding and is timing out requests. When aiCache

knows about such malfunctioning origin server as a result of it failing a health check, it avoids sending requests

to it and can do one of the following instead:

¶ send client requests to surviving origin servers

¶ send request to origin server of last resort

¶ serve stale cached content

On the other hand, if aiCache has OS health checks disabled and cannot detect OS failure, it may send

client requests to a dead server and then have to enforce timeout on the response time and only after such

timeout, take a corrective action. In the ensuing seconds of waiting for response, the client just might abandon

the request and go to a different website.

You might encounter a situation when you use tagged OS and discover that the regular health check URL

doesnôt work for these ï for example, resulting in 404 responses and such. To rectify, you can modify the HC

match string to something that is always present in any HTTP response (for example, ñHTTPò) or disable HC

checking for tagged OS via disable_os_tag_hc website-level setting. It is a flag and requires no value.

aiCache V 6.291

 User Guide
www.aiCache.com

75

Get your life backÊ
É 2001-2013 aiCache, Inc .

Monitoring Health of aiCache Servers.

If you need to monitor aiCache servers themselves, for purposes of alerting or you need to configure health

checks to "ping" aiCache servers from load balancers and such, you must make sure the health check requests

that aiCache receives from these probing agents have a valid Host HTTP header, matching one of the websites

that aiCache is configured to accelerate.

In general, aiCache might be configured to accelerate a number of websites: say a.com, b.com and c.com.

At any given point in time aiCache might be unable to serve some of these sites, due to failure of all origin

servers, while continuing to serve other sites just fine. This is why it is important to make sure any external

health checks against aiCache carry a proper Host header - to discern what sites are still available and what are

not.

In addition to such HTTP probing of aiCache servers, we also advise to use additional monitoring methods

to periodically probe the usual set of OS-level tests: CPU utilization, disk space, swapping etc.

aiCache exposes an extremely rich set of statistics via SNMP and we most strongly advise to collect some

of the aiCache SNMP counters as well. aiCache SNMP integration is described later in this Guide.

Cacheable vs. non-cacheable content, why very large TTLs are not always a
good thing and auxiliary content versioning.

As far as aiCache is concerned, content can be divided into 2 broad categories: cacheable and non-

cacheable
5
. It also helps to think of cacheable content as one that can be shared and non-cacheable content as

one that should never be shared or offers no merits when cached.
6

Certain content on your web site might change frequently, as often as once every 5 second or once a

minute. Other content does not change that frequently. Some changes once every hour, some change once

every day and so forth.

We must configure aiCache to obey our ñdocument freshnessò rules to maximize the benefits of caching:

improving overall performance including performance as perceived by visitors, reducing load against the siteôs

infrastructure and, ultimately, allowing for reduction of footprint and significant monetary savings .

In our www.acmenews.com example most content on the site is cacheable and we can reasonably expect to

have cache hit ratios as high as 95%+, depending on the traffic pattern.

5
 We also call it 0-TTL content (zero-TTL).

6
 With some clever tricks you can configure per-user caching, but doing so will have rather limited benefits.

aiCache V 6.291

 User Guide
www.aiCache.com

76

Get your life backÊ
É 2001-2013 aiCache, Inc .

For example, if 100 RPS come in for the home page and we cache it for 20 seconds, we will serve 20*100 -

1 = 1999 requests out of cache and only 1 from origin. As a result we would have reduced the traffic to the

origin server by ... drum roll ... nearly 2000 times, for this particular URL ! The resulting cache hit ratio is, for

all practical purposes, cool 100%. Of course, if we only get 10 RPS for that URL, then reduction will ñonlyò be

a factor of 200, but still the same near 100% . And we do have customers with caching ratios in excess of 99%.

Clearly, if most content can be cached in similar fashion, we can reduce the load on origin infrastructure close

to zero RPS!

As aiCache, by default, encourages downstream caching for the same amount of time as the TTL value, it

helps to extend caching of Content Style Sheets (CSS), image and JavaScript (JS) files to may be few hours or

even days, so as users visit your site, their browsers don't have to refresh auxiliary content every time they go

to a different page.

Yet as we go about configuring the caching rules, it is important not to be carried away. As you can see,

caching frequently requested URLs for only 20 seconds already delivers most of the benefits - instantaneous

response to users and nearly complete elimination of load on your web, DB and App servers.

But if you allow caching for say 1 day, you lose ability to have the content refresh itself within reasonable

amount of time. So if and when you need to modify some cached content on the origin servers, it will take up to

24 hrs for it to get refreshed by visitor browsers, even after you expire it on aiCache servers. Clearly situation

to be avoided if you do make frequent changes to your auxiliary content! While you can always force expiration

of content in aiCache via CLI, there's no such easy way to do so at visitor browsers, stopping short of

publishing a giant "Hit CTRL-F5 NOW!!! " banner on your home page, clearly not a very good idea.

Another reason not to jack up TTLs for cacheable content is less obvious, but equally important. Imagine

that due a mistake or malfunction somewhere within origin server infrastructure, a broken or invalid content is

delivered to, and cached by aiCache and visitor browsers. Again, if TTL is set too high, it will take a long time

for that erroneous document to be purged and refreshed.

So the moral of the story is: don't go overboard with TTLs, set them so that you retain ability to make

changes to your content. The TTLs configured in 30m range will allow a typical visitor to enjoy the benefits of

his/her browser caching content locally for the duration of their visit to your site, while still preserving your

ability to modify such content within reasonable amount of time.

One can argue that images are a different story and will be partially right. Images that never ever change

can in fact be cached for an extended period of time (1 week+). Examples include the common 1x1.gif and

things of that nature. Yet photographs are different and the same caveats apply: if you need to have ability to

recall/change/expire an image within reasonable amount of time, do set reasonable TTLs. Of course there're

ways to make unwelcome images to disappear from your site's content by simply editing them out of HTML,

but we hope you still get our point.

And as a side advice - about the only way to guarantee whatever changes you make to JS and CSS do take

immediate effect is to version them. In other world, you'd need to make sure the SRC location changes with

every release. You can add a YYMMDD suffix to the names of your JS and CSS files or resort to a different

form of versioned and consistent naming convention.

aiCache V 6.291

 User Guide
www.aiCache.com

77

Get your life backÊ
É 2001-2013 aiCache, Inc .

It just keeps getting better: aiCache benefits with non-cacheable content.

 The non-cacheable requests are always forwarded verbatim to the origin servers and obtained responses

are fed back to the requesting clients, verbatim
7
, without being cached or shared. Even in this situation, with no

benefits of caching possible, use of aiCache offers a very important advantage: it offloads the task of dealing

with the client network connections away from the web servers, where each of client connections requires a

dedicated process that lives for the duration of connection, to aiCache ï which uses extremely efficient, zero-

overhead processing of requests/responses. Do not underestimate this benefit ï it can be very significant!

To illustrate, let's imagine a client consuming larger responses from a web site over a slower/congested

connection. Without aiCache front-ending such requests/responses, most existing web servers have to dedicate a

whole separate process/thread to sending and/or receiving of this data to such slower client, even when the

actual generation or post-processing of the response is very fast. Such dedicated process will need to be

maintained for the duration of such connection, which could be 10 and more seconds.

Imagine more than a hundred responses like that being fed to the clients at the same time and you can

probably see how most web farms would have a problem in such a situation. What if you have a few tens of

thousands of connected users - the situation only gets worse ! And chances are that the code that generates the

responses also maintains an application server and a DB connection for the duration of the response, only

further compounding the problem and propagating even more load to your application and database Servers.

Now, with aiCache front-ending the traffic, the situation is very different. It is the aiCache that obtains a

complete request from a client, makes sure it is a valid request and only then, virtually instantaneously, feeds it

to an origin server.

Similarly, when on origin server is ready with a response, aiCache consumes it virtually instantaneously,

not tying up the origin server for much longer time like a regular client would. After obtaining a complete

response from origin server, aiCache then feeds the response to the requesting clients, using its extremely

efficient, zero-overhead network logic.

In addition to this offloading benefit, aiCache also offers industry's most comprehensive set of DOS

protection countermeasures, see a dedicated DOS chapter elsewhere in this manual.

The list doesn't stop there: additional benefits that aiCache offers for non-cacheable requests include

optional on-the-fly compression and expanded reporting of and alerting on, wide range of additional statistics,

all in real time, including number of connections, request/sec, response processing time, etc .

To summarize: even if your web site serves significant amount of non-cacheable content, aiCache still has

so much to offer !

7
 aiCache might perform some request/response header modifications if so configured.

aiCache V 6.291

 User Guide
www.aiCache.com

78

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache processing of cacheable content.

Of course, you obtain the most benefits when allowing aiCache cache cacheable content (try saying that 3

times in a row fast!). Letôs discuss the most important phases that aiCache goes through when processing such

cacheable requests.

First-Fill.

The cacheable content is obtained from one of the configured origin servers the first time a response is

requested by a visitor and it is preserved in aiCacheôs in-memory cache for the so called ñtime to liveò (TTL)

period of time. During this period of time the response is considered to be fresh and, upon future requests, is

served directly from the aiCacheôs RAM-based cache without having to retrieve it again from the origin servers.

And when the response comes directly from aiCache's response cache, it completely eliminates all and any

load that your web site components, such as web, application and database servers, would be subjected to

otherwise.

Since aiCache's response cache is RAM based, serving of cached response generates no disk IO, outside of

access log (and even that can be suppressed or decimated).

Refresh.

When a previously cached response becomes stale and aiCache receives a request for it, a fresh copy of the

content is obtained from the origin web servers and again, is stored in the aiCacheôs cache. It is then used to

satisfy user requests for another TTL interval. This cycle repeats for as long as the aiCache server is

operational.

The normal behavior when discovering a stale cached response is as follows: the first request to discover a

stale response, requests a fresh response from an origin server. Subsequent requests that discover the stale

response are put in ñwaiting lineò of sorts, awaiting the refresh that was requested by the first request, to finish.

When refresh takes a while to complete, the queue of waiting requests can grow large and each request in

that queue will have to wait the entire time till the refresh response is obtained from an origin server.

You can override this behavior by setting no_wait_refresh setting at website level. With this setting in

effect, it is only the first ñunluckyò request that discovers the stale response that requests a refresh and waits for

it for it to complete. The subsequent requests are replied to with ñstaleò data ï which behavior you might find

acceptable for your situation. When the fresh response data does finally come, the response cache is refreshed

with it.

Lets say you cache some URL for 10 seconds and it takes a 2 seconds to refresh it. Assuming 100 RPS for

this URL (1000 over span of 10 seconds), normal behavior results in 800 requests satisfied instantaneously with

cached response data. 200 requests will have to wait 2 seconds to obtain the new data when stale response is

detected.

aiCache V 6.291

 User Guide
www.aiCache.com

79

Get your life backÊ
É 2001-2013 aiCache, Inc .

With no_wait_refresh set, 800 requests are satisfied instantaneously with fresh cached response data, 200

requests are satisfied instantaneously with stale cached response data (up to 2 seconds stale) and only 1 request

would have to wait the entire 2 seconds for its response. If this is an acceptable behavior for your particular

setup, consider enabling it to minimize the response time.

aiCache reports the number of requests satisfied in this fashion as ñno-wait missesò in both global and

website statistics sections vi aWeb and CLI interfaces.

Irrespective of no_wait_refresh , should the request for the fresh copy of cacheable content fail, you can

configure aiCache to serve back previous (stale) version of cached content ï instead of serving an error

response. By doing so you will , in effect, shield your visitors from origin server failures.

Handling of non-200 origin server responses to cacheable requests.

Most HTTP responses have "200 OK" response code. When a non-200 response is obtained in response to

a cacheable request, aiCache can be configured to retry the request and/or serve stale cached content. If all of

the retry attempts fail and no stale content is available, aiCache then does one the following, depending on

response status:

¶ 302, 301 redirects: response is sent to all requesting clients, response is cached in accordance with TTL

setting

¶ 401,404,407 - response is sent to all requesting clients, but is not cached

¶ any other responses > 300, > 400: response is overwritten with short version, unless orig_err_resp

setting is set in which case no overwriting takes place, and is sent to all pending clients. Such response

is not cached.

Basically, aiCache does its best to not cache bad responses and to minimize the overhead of sending error

responses to clients.

You can configure aiCache to only accept 200 response code for cacheable requests by setting

retry_non200. When non-200 response code is received, aiCache will execute complete retry-fallback

sequence .

pat /news.html exact 10

retry_non200

About 401, 407 responses .

We most strongly recommend to configure your site, aiCache and origin servers, to not require

authentication for cacheable requests (ones that match a pattern with non-zero TTL). In other words, do not

make content that requires authentication, cacheable. Whenever a request comes in that has Authorization

HTTP header set, it is assigned TTL of 0 and always forwarded to origin server, even if it matches a cacheable

aiCache V 6.291

 User Guide
www.aiCache.com

80

Get your life backÊ
É 2001-2013 aiCache, Inc .

pattern and there's a valid, fresh, cached response available. Any response obtained to a request with TTL of

zero, as you know by now, is never cached/shared.

When a cacheable request comes in, requiring first fill and/or refresh, and origin server replies back with a

401-status or 407-status response that has WWW-Authenticate HTTP header in it, the 401 response is returned

to the requesting client(s).

When received by clients, presence of WWW-Authenticate HTTP header results in browsers prompting

the users for username and password and when they are obtained, a request is sent again, this time carrying

Authorization header. Presence of that header in request makes that request and its response non-cacheable -

just as you would expect aiCache to process non-cacheable requests and responses.

If you want to enable caching of responses that require Authentication, you can use httpheader website

configuration setting to add a pre-cooked Authorization header to all cacheable requests when a first fill or

refresh is required - thusly "fooling" origin server into thinking that clients are pre-authenticated, for example:

httpheader Authorization Basic ZWRtbW12Zm5Ymmzy

 As a result the origin servers will not respond back with 401/407 responses and requests/responses can

now be cached. Such setup only works with Basic authentication and doesn't work with Digest authentication.

You can capture appropriate value to use for Authorization httpheader by using an HTTP header capturing

tool, such as HTTPHeaders, Firebug, Fiddler etc.

Best practices to maximize benefits of caching.

Hereôre some suggestions to maximize the benefits of caching:

¶ Allow for prolonged caching of javascript (.js), content style sheets (.css), images (.png, .jpg, .gif

etc) and other auxiliary content, that is not changed frequently. Few days for auxiliary images and few

hours for CSS and JS files are a good estimate here. Remember, aiCache serves cacheable content in a

way that allows it to be properly cached by visitorôs browsers and this will lead to even more benefits,

eliminating the need for conditional requests (If -Modified-Since and If-Match) and 304 responses

altogether.

¶ Sometimes, caching even for few seconds makes a tremendous difference. Imagine a URL that receives

100 requests a second. Without aiCache each and every one of these will head straight to the origin

servers and most likely past that as well ï right to app servers and DB servers. If you enable caching

for just 5 seconds, then origin server will only see 1 request every 5 second. That is 500-time reduction

of traffic to your origin servers and the rest of your infrastructure. Could be a difference between a site

that cannot stay up even with dozens of origin servers (and matching number of App and/or DB servers)

and a site whose footprint can now be reduced to say just 2-3 origin servers ! Meaningful results can be

obtained even with 1-2 second TTLs for the busier URLs.

¶ Normally it will be responses to GET requests that we configure for caching. However, some of sites

use POST requests for their search forms and such. aiCache allows for caching of POST requests,

aiCache V 6.291

 User Guide
www.aiCache.com

81

Get your life backÊ
É 2001-2013 aiCache, Inc .

although you must be careful with these, to prevent personal data from becoming shared by mistake ï

we have more to say about it later in this document.

¶ Consider employing some form of versioning for auxiliary content if you want to have full control of

your web pages. For example, if a web page references a Javascript file called script.js and you need to

modify that file, you might not be able to guarantee that all of your site visitors will see the new file

content right away - as an older, cached version script.js might still out there in corporate and ISP

HTTP proxies and in local browser caches. A very simple fix to change the SRC attribute of the

Javascript file to scriptV2.js and rename the file itself to match this name. Now the change is

instantaneous and assured right after you publish the HTML page that references this JS file.

It is important to mention that with aiCache, you do not have to modify anything on your origin web

servers, App or DB server nor do you have to ask your Dev team to write any code to handle freshness control

- that crowd always has plenty of projects to work on as is. This allows you to control freshness of the content

with great ease and minimum overhead, all configured, on-the-fly, with no user impact, at a single source.

aiCache V 6.291

 User Guide
www.aiCache.com

82

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache handling of conditional HTTP requests.

To maximize benefits of caching, eliminate unnecessary traffic and simplify handling of requests and

responses, aiCache employs certain logic that we shall explain here. But let us first provide certain basic

information about conditional requests and responses.

HTTP has a number of optional request and response headers that are known as ñconditionalò headers.

For example, when an HTTP response is delivered from a web server to a requesting client, some or all of the

following headers could be sent back by the responding web server:

¶ Etag (for example ñEtag: 0924385FDCACCCò). This can be thought of as responseôs digital

fingerprint of sorts .

¶ Last-Modified (for example ñLast-Modified: Jan 1 2001 01:01:01 ESTò).

¶ Expires (for example ñExpires: Jan 1 2001 01:01:01 ESTò)

The idea behind these response headers is to associate certain information about the response bodies that

can then be used by the requesting client to formulate conditional requests for the URLs when client are in need

of requesting of the URLs again.

For example, client can say: give me a response for this URL, if the responseôs Etag is different from

certain value, or: give me a response for this URL, if the response has been modified since a certain point in

time. The web servers can then look at these conditional headers and serve the complete new response ï such

as when responseôs etag is indeed different from what client has specified in the request, or the responseôs Last-

Modified time is different from one specified in the request.

Or, if the condition has not changed, a much abbreviated version of HTTP response could be sent back.

Instead of a complete new response, literally a very brief ñnothing has changedò response is sent back. Web

server assumes that client browser still has a local copy of the response and since response has not changed at

the web server, client should just use its local copy. For example, instead of sending back 100KB of data, less

than a 100 bytes are now sent to the client, a 1000-fold decrease in traffic!

So with Etag and Last-Modified headers sent in the responses, client would typically qualify all

subsequent requests for the same URLs with certain matching qualifiers, as if telling web servers ï send me a

responses to this URL request only if conditions have changed.

The Expires header is a bit more straightforward. Incorporated in the response it simply tells the

requesting client that it can safely reuse (locally cache) the response till the specified date and time. Client

doesnôt need to follow up with subsequent conditional requests, for as long as local time is less than Expires

time as specified in the response.

aiCache takes this optimization ideas one step further. Unless otherwise configured, it eliminates/strips

out both the Etag and Last-Modified conditional response headers for cacheable content. It does so by making

sure these are never propagated from origin servers to the requesting clients. It also never generates such

headers on its own.

aiCache V 6.291

 User Guide
www.aiCache.com

83

Get your life backÊ
É 2001-2013 aiCache, Inc .

Additionally, aiCache eliminates/strips out Expires response header, as sent by origin servers, for

cacheable content. In leu of that value, aiCache formulates its own value for the Expires header and that is what

is stored and sent to the clients, for cacheable content.

For example, assuming certain URL is declared to be cacheable for a day, aiCache would calculate

proper Expires value, upon first caching of the response, as ñtime now + 1 dayò and use the resulting value in

the Expires header.

The end result is encouraging of caching and reuse of content by the clients (browsers, intermediary

proxies and caches) without having to burden both the clients and the aiCache server with generation and

processing of conditional requests.

Enabling forwarding and processing of Etag validators for cacheable
responses.

Normally, aiCache removes Etag headers from cached responses and does not provide 304-Not-

Modified responses for requests with ñIf-None-Matchò headers. It does so in order to eliminate all conditional

requests.

However, if you so require, you can instruct aiCache to store/forward Etag headers for cached responses

and/or process requests with If-None-Match headers.

To configure aiCache to store and forward to requesting clients the cacheable responseôs Etag header,

set forward_os_etag_header setting at website level. It is a flag and requires no value.

To configure aiCache to process If-None-Match conditional logic, set process_etag flag at website

level. It is a flag and requires no value. When so configured, aiCache will look into incoming requests to see if

ñIf-None-Matchò conditional request header is present. If it is present and cached response contains matching

Etag header, as obtained in the response from an origin server, a ñ304ò Not-Modified response will be issued to

the requesting client.

Please test carefully before enabling such processing and forwarding of Etag headers so that it doesnôt

impact your site.

When responding with 304 responses, aiCache will add ETag header to the response, assuming the

origin server provided the ETag header when serving the original response back to the aiCache.

Overriding pattern TTL based on response header value.

Normally, aiCache obeys caching TTL rule as set by matching pattern. Sometimes, you might find

yourself configuring a aiCache for a website that requires certain flexibility in assigning TTL based not only on

aiCache V 6.291

 User Guide
www.aiCache.com

84

Get your life backÊ
É 2001-2013 aiCache, Inc .

the request URL (these you match via patterns), but also on what response looks like. In this particular case,

TTL might depend on values of certain response headers.

For example, letôs assume thereôs a URL pattern of /content_ID/NNNN , where NNNN is some random

number. These URLs, when requested, can return HTML ï which you would like to cache for 10 secons, CSS

that you could cache for 1 day or images which you could cache for 1 week. But you cannot make the

determination of the TTL until you receive the actual response and can analyze the Content-Type header.

Enter the resp_header_pattern_ttl setting. It is pattern level setting that requires exactly 3 parameters:

header name, header matching pattern and the override TTL. Hereôs how you can use it to configure what you

require in the example above

é

pattern /content_ID/ simple 10 # default cache of 10 sec s

resp_ header_pattern_ttl Content - Type css 1d # but cache CSS for 1 day

resp_ header_pattern_ttl Content - Type image 1w # and cache images for 1 week

resp_ header_pattern_ttl Content - Type java 1w # cache JS for 1 week

In the example above, we use Content-Type response header, but you can match on arbitrary response

header ï so that you could have origin servers return some custom header that you could act on.

For such setup to work, the URL pattern must be cacheable. The overriding TTL could be larger or

smaller than that of the enclosing pattern but it must be a non-zero positive number, followed by optional TTL

convenience modifiers - ñdò for day, ñwò for week and so on..

The header matching pattern is a regular expression pattern, so you have full power of regexp here.

aiCache reports override TTLs in the output of CLI inventory command, but it is the matching patternôs

TTL that is reported in the access log file. The access log file does report actual cache hit or miss, taking into

account the override TTL value.

Please note that a given URL should always return response of a certain Content-Type, otherwise

unpredictable behavior will take place.

TTL-bending when under heavy load.

Normally, aiCache obeys a caching TTL rule as set by matching pattern. Sometimes, you might find

yourself in a situation when heavy load on your site is driving response time and load to origin servers and

you'd like to temporarily increase the TTLs, to reduce the load and survive the onslaught of traffic. You can

certainly manually edit the configuration file, modify (increase) the defined TTLs and reload the configuration

for these changes to take effect. But then you need to remember to restore the old settings back when the load

subsides and clearly, such manual changes require presence of an operator.

aiCache comes to the rescue yet again, with a website-level setting called ttl_scale_factor. It takes 2

required parameters: integer scale factor and activation response time, in that order. For example:

aiCache V 6.291

 User Guide
www.aiCache.com

85

Get your life backÊ
É 2001-2013 aiCache, Inc .

website

hostname news.acm e.com

ttl_scale_factor 5 2000

pattern news.php simple 10

With these settings, should averaged out website response time exceed 2000 msec, the TTLs will be

automatically and temporarily increased by factor of 5. So the pattern of news.php will be cached for 50

seconds, instead of 10, should response time exceed 2000 msec (2 seconds). All of the defined cacheable

patterns will have their TTL increased by the same factor. When response time drops below 2000 msec, the

TTL will be atomically restored back to its original value of 10 seconds and likewise, all of the defined

cacheable patterns will have their TTL restored back to the original value. All of this magic will happen

automatically, without any operator involvement.

Please that aiCache analyzes response times every few seconds . It also logs both setting of the scale factor

and resetting of it, in the shared error log file.

Watch-folder, file-driven content expiration.

As you know by now, aiCache offers a number of ways to forcefully expire cached content ï including

CLI, response-driven expiration and hand-crafted, special expiration URLs. It also provides a simple web page

for form-driven expiration.

Additionally, aiCache provides file-driven expiration functionality. You specify an expiration watch

directory, by setting global setting of exp_watch_dir. For example:

exp_watch_dir /usr/local/aicache/exp_watch_folder

admin_email content@operations.acme.com

aiCache then checks content of that folder every 5 seconds. Any files found within that folder are

assumed to contain content expiration instructions, one per line, in the following format:

WEBSITE_NAME REGULAR_EXPIRESSION_PATTERN

For your convenience, aiCache allows and ignores empty and comment lines. For example

Expire News

www.acme.com NE WS

Expire Sports

www.acme.com SPORTS

www.acme.com .gif

As aiCache processes these instructions, resulting output is logged to error log file. It can also be

emailed, by setting admin_email global level setting. The expiration email contains timestamp, identifies each

aiCache V 6.291

 User Guide
www.aiCache.com

86

Get your life backÊ
É 2001-2013 aiCache, Inc .

expiration file as it is processed and reports how many entries have been expired per pattern. As usual, aiCache

only spools the outbound email into the alert_dir and it is up to an external script to pick up and dispatch the

email to proper address. An example script, alert.pl, is provided within aiCache distribution file.

It is up to you just how you place expiration files into the expiration watch directory. You can use push

or pull method of your choosing ï FTP, SCP, RCP, RSYNC etc.

Please note that aiCache instance that has obtained an expiration file in its watch folder, doesnôt

communicate the content of this file to its aiCache peers (should any be defined). In other words, such file-

based expiration is not peer aware and you need to make sure each aiCache instance is fed the same expiration

file, to assure expiration of content throughout aiCache cluster.

aiCache removes each expiration files from exp_watch_dir after it processes them, one by one. You can

name the files anything you like, may be coming up with some kind of naming convention that makes sense to

you. As usual, please assure aiCache user has full rights to the directory, so it could both read and remove the

expiration files.

Preventing caching of responses.

When aiCache finds no matching pattern for the request's URL, it declares the request/response non-

cacheable. In other words aiCache can only cache the requests that match caching patterns with non-zero TTLs,

non-matching requests are never cached.

Another way to prevent Web documents from being cached is to explicitly assign TTL of 0 to certain

patterns. Typically examples of such URLs would include dynamic, frequently accessed personalized content or

URLs that might "clash" with cacheable URLs.

For example, let's consider a URL:

 www.acmenews.com/viewmyprofile.jsp?userid=1234

This URL displays customer profiles, which are unique and private to each user. We definitely want to

avoid this response from being cached for a number of reasons. First of all, it does not make sense to cache this

response since it cannot be shared amongst different users and we would not realize any performance gain from

doing this. Secondly users would not be happy, so say the least, if we were to share their private information

with other users of our web site. Therefore if we do not include a pattern that matches this URL in the

configuration file, then this document is never cached/shared. Another way to accomplish that would be to put a

matching pattern into the configuration file. For example:

pattern viewmyprofile.jsp simple 0

http://www.acmenews.com/viewmyprofile.jsp?userid=1234

aiCache V 6.291

 User Guide
www.aiCache.com

87

Get your life backÊ
É 2001-2013 aiCache, Inc .

You must always be careful not to allow caching of private user information. As you fine-tune the

configuration files and make changes to TTL of shareable documents, no harm can be done to your users from

the privacy point of view. However if you do not pay attention and somehow allow for sharing of private user

data you might be in trouble with your users. See troubleshooting section for more information on how this can

happen and how to avoid from happening in the first place.

aiCache has much more to offer in the way of caching controls, we will discuss it later in this Guide.

URL rewriting and rewrite-redirection.

Occasionally you might have a need for URL rewriting. For example if you re-arrange location of your

site's images from /images to /media/images you might want to catch any "stray" requests for anything under

/images and change that to /media/images. So if you detect a request coming in for /images/1x1.gif, you want

to change that to /media/images/1x1.gif . This kind of on-the-fly rewriting might come handy when you have

references to the relocated content scattered throughout your site, including static and dynamically generated

content and want to make sure you don't break any of these pages .

A different example: say you decide to move all of the auxiliary content from www.acmenews.com to

media.acmenews.com . So now, when a request comes to www.acmenews.com, requesting anything under

/css, /js , /images, you want such requests be redirected to media.acmenews.com , while keeping (or changing)

the original link. For example a request for www.acmenews.com/image/1x1.gif might be redirected to

media.acmenews.com/media/images/1x1.gif .

Another example - dealing with dynamic content. A URL of code that renders forum pages might be

changed from displayforum.php?forum=123 to showtopic.jsp?fid=123 . Yet you want to make sure any

bookmarks that your visitors might have made before the change, continue to work after the switch.
8

These are the situations where you might need to use URL rewrite and URL rewrite-redirect features of

aiCache. To configure, specify rewrite setting under matching pattern section. The rewrite directive takes 2

parameters: the from pattern and the replacement string.

To accommodate for 1st example:

pattern /images simple 30m

rewrite /images /media/images

In case of such URL rewrite, the new rewritten URL inherits the TTL setting of the matching pattern.

8
 Clearly you should not rely on such rewriting to deliver most of your content, but use it instead a temporary patch facilitating

seamless transition, temporary support of legacy code/users etc. Overuse of rewrites is known to cause mudslides, earthquakes and 10-

hour long outages.

aiCache V 6.291

 User Guide
www.aiCache.com

88

Get your life backÊ
É 2001-2013 aiCache, Inc .

To force rewrite and redirection, as opposed to rewrite only, the replacement string must start with http://

or https:// . To accommodate for second example:

pattern /image simple 30m

rewrite /image http://media.acmenews.com/media/images

In case of redirect, the TTL setting ceases to have any meaning, yet still must be provided to conform to the

pattern definition syntax.

Normally aiCache issues a ñ302ò redirect. To change to ñ301ò redirect instead, set redirect_301 flag at the

pattern level.

Moving to more complex URL rewriting examples - use of pattern grouping in from_patterns and back-

references in replacement patterns. You can group matching symbols in the from_pattern by enclosing a part

of the matching pattern in parenthesis. You can then refer to these groups by using a special notation:

\N (backslash-number)

in the replacement pattern. \0 stands for the whole matched string, \1 for the first defined group and so on.

To accommodate for the third example:

pattern displayforum.php simple

rewrite displ ayforum.php \ ?forum=(\ d+) showtopic.jsp?fid= \ 1

As with all regexp patterns, special characters must be escaped in the from_pattern - this is why we have a

backslash in front of question mark in from_pattern. We capture the forum numeric parameter by using the

(\d+) grouping pattern and then refer to that captured group in the replacement pattern by using a back-

reference \1. You can have more than one group defined in the from_pattern and referenced in the replacement

pattern.

Normally, rewrites would happen for both HTTPS and HTTP requests. However, you can limit the rewrite

to particular type of requests, HTTP or HTTP, by using rewrite_http_only and rewrite_http s_only flags:

hostname store.acme.com

...

pattern secure.jsp exact 0

rewrite secure.jsp https:/ /store.acme.com/secure.jsp

rewrite_http_only

The example above effectively rewrite-redirects to secure, HTTPS-protected URL. Unless

rewrite_http_only setting is specified, the rewrite might cause infinite rewrite-redirect loop. Likewise, you

might want to safeguard certain URLs so that they are only requested over HTTP, using similar technique.

Alternatively, you can use match_http_only or match_https_only pattern-level settings .

aiCache V 6.291

 User Guide
www.aiCache.com

89

Get your life backÊ
É 2001-2013 aiCache, Inc .

The replacement patterns are very flexible and can accomplish much. But yet again, do not overuse the

rewrites to where your site becomes an example in obfuscation techniques, use it only when necessary. Every

now and then do summon all the strength you can and drop older rewrite rules so you don't accumulate too

many of them. We've seen sites with hundreds of rewrite rules that went back 3-4 years ! None of these were in

use anymore yet still they littered the config files. Think twice before using rewrites to catch and correct for

user FFS (fat finger syndrome) .

To help with fine-tuning, testing and troubleshooting of rewrite patterns, you can enable rewrite logging by

specifying log_rewrite setting (place it in global or website sections). The original and rewritten URLs will be

logged in the error log file as rewrites take place. After arriving at working rewrite patterns, we recommend to

turn the rewrite logging off.

You can also use pattest binary that comes in aiCache distribution to test pattern match and rewrites.

Rewrite-redirect (scalpel) feature is different from plain redirect (sledge hammer) feature . For any given

match pattern, the latter always redirects to the same location, no matter what was in the original URL, while

former allows for much more intelligent handling.

After rewriting request's URL, aiCache doesn't attempt to re-match the new, rewritten URL to the list of

defined patterns. Specifically, if you want to assign certain TTL value to a pattern, assign it to the to-be-

rewritten pattern.

Please note that when you enable UA-driven URL rewriting and redirection (see below) or use ua_pattern

settings, explained later in this document, the UA-driven URL rewriting and redirection happens first - as in it

takes precedence over "plain" URL rewriting.

Decimated rewriting.

You can configured aiCache to rewrite a controlled portion of the requests ï as opposed to each and every

one. The pattern-level setting is called rewrite_decimate . It requires a single numeric parameter that it uses as

rewrite decimation factor via modulo division. For example, when set to 10, every 10
th
 request is rewritten

(10% of requests).

pattern displayforum.php simple

 rewrite displayforum.php \ ?forum=(\ d+) showtopic.jsp?fid= \ 1

 rewrite_decimate 20 # rewrite 1/20 or 5% of matching requests

URL escaping.

Certain older browsers might break URLs by not properly escaping request URLs. For example,

international sites might send URLs with non-ASCII symbols. Conforming browsers are supposed to ñescapeò

such symbols by replacing them with ñ%XXò notations, where XX is the symbolôs hex value.

aiCache V 6.291

 User Guide
www.aiCache.com

90

Get your life backÊ
É 2001-2013 aiCache, Inc .

In order to deal with non-conforming browsers, you might opt to instruct aiCache to force url escaping on

inbound requests, by setting escape_url flag at global level of the aiCache configuration file. The setting is a

flag and requires no value.

By default, the following characters are considered safe and are not escaped in URLs:

:/?#[]@%!$&'()*+,;=

You can provide your own list of safe characters by setting escape_url_safe_chars global level setting, for

example:

server

é

escape_url_safe_chars :/ ?[]@%!$&'()*+,;=

Since escape_url_safe_chars is likely to contain a hash mark # - which is normally reserved for start-of-

comment in aiCache, no comments are allowed in the same configuration file line. But you can provide a

comment line before or after this line, in usual fashion.

aiCache V 6.291

 User Guide
www.aiCache.com

91

Get your life backÊ
É 2001-2013 aiCache, Inc .

Support for intelligent handling of mobile and desktop
versions of the websites.

Supporting desktop and mobile versions of web sites.

Many businesses have a requirement to support both desktop and mobile versions of their web site(s). In

some cases, it done in a fashion where mobile traffic is (re)directed to a different website, for example

m.acme.com, while sending desktop traffic is sent to the usual www.acme.com.

Some sites would offers both mobile and desktop versions of their content unified under same domain ï for

example www.acme.com, tailoring output to match device capabilities.

Mobile site would normally render content in a simplified way that is more suitable for limited screen size

and limited Javascript, HTML and CSS standards support in mobile browsers. Some sites distinguish between

different mobile devices, offering more content rich versions of the content for more capable devices while

offering the simple version to the less capable devices.

Likewise, due to limited screen sizes of mobile devices, sites cannot serve the same number of ads per

page, for mobile users, as opposed to much larger number of ads per desktop versions of the site. This simple

fact can become point of contention with many a marketing department. Business people would rather serve a

desktop page to an end user as opposed to delivering mobile version of same, due to higher ad revenues.

To support rendering of device-specific content, you need to have some kind of user-agent detection logic

deployed on your web site(s), analyzing user agents strings in incoming requests and tailoring the output and/or

redirecting user traffic as appropriate. For example, when a request coming for www.acme.comôs home page is

detected to be coming from an Android mobile device, a response is sent to redirect the user browser to

m.acme.com. Alternatively, no redirect response is sent back and instead, a mobile version of the page is

rendered right by the www.acme.com.

With two different site serving content, similar logic can be deployed at m.acme.com and when request is

detected as coming from a desktop browser, the response is sent back that redirects the browser to go desktop

version of the site at www.acme.com.

There are a number of challenges related to supporting such duality of content representation to different

device types.

Reliable detection of mobile devices.

As simple as it sounds, this is less than trivial issue. Most detection methods rely on analysis of the

requestôs User-Agent header. Two different techniques could be used: pattern-driven UA matching and

dictionary-driven UA-matching. While pattern method is self-explanatory, the dictionary-driven one relies on

some kind of database that contains, verbatim, letter-for-letter, all UA strings that you need to act on.

Once source of such information could the Internet ï thereôre a number of commercial and open source

projects that have such UA DB available.

http://www.acme.com/
http://www.acme.com/
http://www.acme.com's/
http://www.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

92

Get your life backÊ
É 2001-2013 aiCache, Inc .

No matter the method, as new devices seem to appear every week, you will need to update your matching

logic to stay current. Not only new devices are released frequently, most devices are released by a whole

number of vendors, each such device having its own UA string. As browsers and device ROMS get updated

and patched, even more UA strings spring into existence. Be prepared to spend some time keeping your UA

patterns and dictionaries up-to-date.

aiCache offers industryôs leading support for high-performance and seamless device detection using both of

these methods, so that you donôt have to do it at your application level.

Deploying device detection logic.

If you were to let the code on origin servers decide what version of content to serve, youôd need to pass

requests straight to origin servers, so that they could make the decision about device type, effectively negating

all benefits of content caching. Clearly a non-starter !

aiCache offers industryôs leading support for high-performance and seamless device detection so that you

donôt have to do it at your application level .

Having a strategy for handling of search bots/spiders.

Most sites donôt want to allow spidering/indexing of mobile siteôs content and instead would rather prefer

Googles of the world indexing their main desktop sites. Again, it boils down in most cases to revenue-per-page

issue we described above. When someone runs a search and your site pops up in the results, theyôd want the link

to point to desktop version.

So you would probably want to prohibit spidering and indexing of your mobile siteôs content ï for example

by hosting appropriate robots.txt file on your mobile site.

When a request from a spider comes to your main site, you need to make sure to let it through and not

redirect it to the mobile version of the site by mistake.

You can easily configure aiCache to handle the bots as special cases so you donôt have to do it in your

code. Or alternatively, rely on aiCacheôs default handling of unknown devices ï no rewrites or redirects are

issued by your desktop site and the request ñstaysò with the main site.

Supporting different URL structure.

Some site have their desktop and mobile versions served from completely different environments ï the

code, the backend databases, the datacenters - some or all of these could be different. But most importantly, the

URL structure is likely to be different too.

For example, desktop version of acme.com could serve ñUS Newsò section as www.acme.com/news_front.

The same section is served by mobile site as m.acme.com/content/node_id=123 . Notice how very different the

two URL are. Outside of the home page, which is hopefully served as ñ/ò in both cases, dozens of other URLs

pointing to assorted section fronts, product listings, published stories etc, could be completely different.

aiCache V 6.291

 User Guide
www.aiCache.com

93

Get your life backÊ
É 2001-2013 aiCache, Inc .

Now imagine a mobile user sharing a link to m.acme.com/content/node_id=123 with a desktop user. When

opened in a desktop browser, this URL is likely to result in a PNF (404 Page Not Found) error, unless it is

somehow intelligently rewritten to www.acme.com/news_front

For example, letôs imagine that you provide 10 different section fronts on the mobile site via URLs like

m.acme.com/SECTION_NAME, for example m.acme.com/world_news, m.acme.com/politics ,

m.acme.com/finance etc.The same section fronts are rendered via completely different looking URLs on the

ñmainò site.

Youôd need to come up with a way to provide 2 way mapping between these two sets of URLs, if you want

to be able to catch and redirect both mobile and desktop users in appropriate way. This in itself could be a

strong argument for use of unified CMS for both sites, one that uses same URLs for the same content - and as

you know aiCache offers support for it too.

aiCache offers industryôs leading support for seamless device-driven URL rewriting ï so the proper version

of an article or a section front is delivered to proper devices! As a matter of fact, it is so advanced, even when

you have a number of different sites serving different versions of content (ie m.acme.com and www.acme.com)

you can fold both mobile and desktop sites under one site, while making sure everything works 100% and

proper content is served to proper devices!

Supporting unified mobile/desktop site.

Some sites have their desktop and mobile versions served from same content management system (CMS) ï

unified or folded under the same www site. Such setup has challenges of its own. Imagine an iPhone user

requesting home page, for example www.acme.com/ Most CMSs would render a simplified version of the

home page, taking into amount limited screen size and limited capabilities of the mobile device (iPhone in case,

but it could be an Android device or Windows mobile).

At about the same time, a different user requests the home page, but this time she is using a desktop

browser. In response to the request, the CMS would render out completely different looking page from one that

the same CMS delivered in response to the request made from an iPhone.

Likewise, there could be requests for the home page, coming from assorted search bots ï in response to

which you might want to deliver a different version of content.

Now think about thousands of different URLs that your site provides and needing to tailor output of most

of them to the capabilities of the requesting device.

You might have a sinking feeling in your stomach just about now, thinking to yourself ï thereôs no way this

could be all handled and cached by aiCache. All of these requests will now have to go straight to my origin

servers and thereôs no way my infrastructure can possibly handle this much traffic !

aiCache offers full support for device-intelligent caching in this scenario, with no custom programming

required on your part !

http://www.acme.com/
http://www.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

94

Get your life backÊ
É 2001-2013 aiCache, Inc .

Letting users have a choice.

So it might be clear to most that a lesser mobile device should be served a simplified mobile version of the

requested page. What about 7ò Android tablet ï what version should this one receive ï same simplistic page, a

full blown desktop version or something in the middle ?

 How about 10ò Android Tab or an iPad ? What about Windows 8 tablet ï these will likely support all of

the latest HTML/CSS/JS and Flash standards just as good as their desktop counterparts. In addition to

defaulting users to presentation (mobile vs desktop) of your choosing, how about letting users decide what site

they want to see?

And you guessed it, aiCache supports that too!

aiCacheôs method and apparatus of supporting device-specific seamless
and transparent content selection, caching and filling .

Hereôs the logic that aiCache uses to deliver on the Holy Grail of desktop/mobile-and-everything-in-

between intelligent content serving: Divide et impera.

Before we can conquer, we must divide. There are about 16000 different user agent strings in existence

today and the number is growing every day. aiCache can use 2 different methods of UA matching: pattern-

driven and/or dictionary-based exact-UA-match-driven to ñcompressò this madness down to more manageable

number of User-Agent-derived tags.

To do so, you can define, at website level, a series UA patterns along with their tags. Likewise, a setting

could be set pointing to a file that matches complete UA strings to tags.

Again, aiCache could use both pattern-based matching and exact UA matching, in that order. When UA

could not matched through neither of the methods, a UA tag of ñdefaultò is assigned to the request.

aiCache runs the UA-matching logic only when told so, instead doing it for each and every request. While

you might want to run this logic for home page URL, you donôt want to run it for hundreds of URLs that

request auxiliary content ï JS, CSS and image files. You configure aiCache to run the UA matching logic for

selected requests by setting ua_tag_process flag at pattern level.

Note that you must set ua_tag_process flag at pattern level to have aiCache apply UA tagging logic.

Again, when requestôs UA string is matched to a ua_tag_pattern or to an exact UA string (defined in

ua_tag_file), aiCache then tags the request with the tag name that you provide. When no match could be found,

a tag of default assigned to the request. You will see how you can use the default tag later.

To make it easier for the origin servers to decide what version of content to render, aiCache sends the

matched tag to the origin servers via X-UA-Rewrite header.

For example, you can decide to render your content in 3 different stylings: mobile_simple, tablet and

default desktop style. As desktop styling is most common, aiCache doesnôt require a custom tag for it, but letôs

use mobile_simple and tablet as two other tags.

aiCache V 6.291

 User Guide
www.aiCache.com

95

Get your life backÊ
É 2001-2013 aiCache, Inc .

Now, we tell aiCache how to match User-Agent string to each of these tags: 2 explicit tags and one default.

To configure UA-to-tag patterns, simply define them, at website level, via ua_tag_pattern For example

(incomplete list)

ua_tag_pattern .*BlackBerry8.* mobile_simple

ua_tag_pattern .*iPhone.* mobile_simple

ua_tag_pattern .*iPad. * tablet

To configure UA-to-tag exact-matching, simply define them in a separate file, where each line contain tag

and complete UA, in that order, separated by single white space. Lines starting with # are ignored.

To make it easier for the origin servers to decide what version of content to render, aiCache sends the

matched tag to the origin servers via X-UA-Rewrite header.

You can derive such file from a source of your choosing. It is up to you to secure proper rights and access

to the UA database ï some are free, some require a payment etc. You might be able to receive a complete list of

known US agents from your analytics provider. Beware that the list undergoes daily changes ï as new devices,

browsers and browser patches, ROM versions etc are introduced to the market.

After obtaining a DB containing the User Agent strings, you can process the file using a custom script and

output the file format that aiCache expects. For example, using WURFL or similar device description file, you

can look at screen size attribute and assign tags based on that value. Possibilities are endless ï you can look for

certain device type, CSS or JS support, support for HTML5, Flash - but again it is up to you to produce the

output in the format that aiCache expects and as you will see, the format is very simple

For example (incomplete list with just 2 entries) place the following into a file called useragentfile. Note in

the example below how the exact UA matching is specific to a particular release of Firefox 13 browser , version

13.0.1 . It is likely there will be dozens of different version of Firefox 13, each requiring its own exact UA

matching string. Likewise, the particular UA string we provide for Ipad, is likely to go through many minor

changes, each requiring a new UA string. It is easier to match for such UA by using UA pattern matching, as

opposed to exact, ñletter-for-letterò matching. But we digress.

Match firefox 13.0.1 to ñdefaultò tag

default Mozilla/5.0 (Windows NT 6.1; WOW64; rv:13.0) Gecko/20100101 Firef ox/13.0.1

match Ipad to ñtablet ò tag

tablet Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS X; en - us) AppleWebKit/531.21.10

(KHTML, like Gecko) version/4.0.4 Mobile/7B367 Safari/531.21.10

Next we point to that file via ua_tag_file setting, at website level. For example :

ua_tag_file useragentfile

Now, you need to tell aiCache ñrun the UA matching logic for these requestsò by setting ua_tag_process

flag at pattern level. This way aiCache runs the UA-matching logic only when told so, instead doing it for each

and every request. While you might want to run this logic for home page URL, you donôt want to run it for

thousands of URLs that request auxiliary content ï JS, CSS and image files.

aiCache V 6.291

 User Guide
www.aiCache.com

96

Get your life backÊ
É 2001-2013 aiCache, Inc .

Note that you must set ua_tag_process flag at pattern level to have aiCache apply UA tagging logic.

With ua_tag_process flag set at pattern level, aiCache could use both pattern-based matching and exact

UA matching, in that order.

When UA could not matched through neither of the methods, a UA tag of ñdefaultò is assigned to the

request. You can then use the ñdefaultò tag to drive URL rewriting, as described below. You can also explicitly

assign default tag to the request through pattern or exact UA matching.

To make it easier for the origin servers to decide what version of content to render, aiCache sends the

matched tag to the origin servers via X-UA-Rewrite header.

When needing to fill a UA-tagged request from an origin server, requestôs original User-Agent string will

be forwarded to the origin server, including ñdefaultò-tagged request. You can configure aiCache not to forward

User-Agent header for requests that are tagged as ñdefaultò by setting no_ua_default_tag at website or pattern

level.

aiCache executes the tagging logic, as described above, for both cacheable and no-cacheable request, as

long as matching pattern has the ua_tag_process flag set. Likewise, the tag is forwarded to the origin servers

for both cacheable and no-cacheable requests alike and could be acted on by the server-side code.

However, the UA tag takes on special meaning when cacheable requests are concerned ï in that it becomes

a part of requestôs cache signature, allowing to have unique cached responses stored for same URL but different

UA Tags.

You can go about serving mobile and desktop user in a number of different ways. The rest of configuration

depends on your setup:

Different sites (www.acme.com and m.acme.com), different URL structure.

Weôd want to catch what we think are mobile requests, on the ñmainò site and rewrite-redirect them to the

mobile site. Likewise, we want to catch what we think are desktop requests at mobile site and rewrite redirect

them to the desktop site.

Please be aware that a setup like this might really stretch your sanity to a limit ï as you need to catch and

rewrite all of the URLs of significance that need to be matched across both content management systems.

For example, letôs imagine that you provide 10 different section fronts on the mobile site via URLs like

m.acme.com/SECTION_NAME, for example m.acme.com/world_news, m.acme.com/politics ,

m.acme.com/finance etc.The same section fronts are rendered via completely different looking URLs on the

ñmainò site.

Youôd need to come up with a way to provide 2 way mapping between these two sets of URLs, if you want

to be able to catch and redirect both mobile and desktop users in appropriate way. This in itself could be a

strong argument for use of unified CMS for both sites, one that uses same URLs for the same content - and as

you know aiCache offers support for it too.

Letôs concentrate on desktop site for now. First letôs match, to the best of our abilities, all of the known

mobile devices to mobile tag. You can use both pattern and exact matching methods as described above.

http://www.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

97

Get your life backÊ
É 2001-2013 aiCache, Inc .

Internet has many mobile-matching patterns, ready for use ï but do be warned that they need constant upkeep,

due to new devices, new ROMs, new versions of browsers appearing daily.

As mentioned earlier, it is often time more important to err on the side of keeping the requests on ñmainò,

aka desktop site, as opposed to redirecting a request to mobile site.

Next, in the matching pattern section, you can specify an exact match string, that is to be matched against

the UA tag (in our case, these will be mobile), along with URL rewrite string. For example, we catch requests

from mobile devices ï by matching to the tag of mobile, directed at /news.html and /technews.html on the main

site and rewrite/redirect them to point to matching URLs on the mobile site. The setting is called

ua_url_rewrite and youôd use it at pattern level:

pattern /news.html simple 30

ua_tag_process

....

ua_url_rewrite mobile .+ http://m.acme.com/render?id=22

pattern /technews.html simple 30

ua_tag_process

....

ua_url_rewrite mobile .+ http://m. acme.com/render?id=31

Note that you have full power of regular expressions in the rewrite pattern, so you capture part of the

original URL and use that in the rewritten URL.

Weôre not tagging the requests from any other browsers, so they will be processed (cached etc) as usual.

Clearly, youôd want to catch and properly rewrite-redirect all URLs of significance ï but not more than

that. For example, you wouldnôt want to apply this processing to the static content etc, as it is not likely to be

ever requested from your main site by any of the mobile browsers.

The ua_url_rewrite setting requires 3 mandatory parameters and accepts up to 3 optional ones. It has the

following format:

ua_url_rewrite TAG match_pattern rewr_pattern [TTL] [OS_TAG] [sub_hostname]

As you can see, you can specify(override) TTL, specify OS Tag, so that matching requests could be

filled from different origin servers and lastly, specify a different Host header to be sent to the origin servers

when a response is requested.

All 3 are optional, but you must specify the preceding parameters when you want to specify OS Tag or

sub_hostname, so that aiCache knows which value is which. So in order to specify OS_Tag, you must specify

TTL - even if matches the patternôs TTL.

If you were to specify sub_hostname value, you then must specify both the TTL and OS Tag ï even

when you simply want to use default OS tag of 0.

aiCache V 6.291

 User Guide
www.aiCache.com

98

Get your life backÊ
É 2001-2013 aiCache, Inc .

Remember that when UA could not matched through neither ua_tag_pattern(s)or ua_tag_file, a UA tag

of ñdefaultò is assigned to the request. The tag will only be set when ua_tag_process flag is set at pattern level.

You can then use the ñdefaultò tag to drive URL rewriting, as described above.

 Different sites (www.acme.com and m.acme.com), same URL structure.

This scenario is rather unlikely, but configuring it is very easy. We still match mobile requests and tag them

with mobile . The only difference from above is that we donôt rewrite the URLs and instead, forward users to

the same URLs on different site.

Normally aiCache issues a ñ302ò redirect. To change to ñ301ò redirect instead, set redirect_301 flag at the

pattern level.

pattern / world news.html simple 30

ua_tag_process

....

ua_url_rewrite mobile .+ http://m.acme.com/worldnews.html

pattern /technews.html simple 30

ua_tag_process

....

ua_url_rewrite mobile .+ http://m.acme.com/technews.html

Same site (www.acme.com), same URL structure, same origin servers.

Again, configuring it is very easy. We still match mobile requests and tag them with mobile . And that is

it! aiCache will still cache content as per your configuration. To make sure content is cached so that differently-

tagged versions of it donôt collide, the UA tag is added to the cached request signature.

To make it easier for the origin servers to decide what version of content to render, aiCache sends the

matched tag to the origin servers via X-UA-Rewrite header. Complete User-Agent string is also forwarded to

the origin server. It is up you what you want to base your content-rendering decision making on: the tag that

aiCache conveniently forward for you, or the entire User-Agent string.

http://www.acme.com/
http://m.acme.com/worldnews.html
http://www.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

99

Get your life backÊ
É 2001-2013 aiCache, Inc .

Same site (www.acme.com), different URL structure, different origins.

This setup allows you to fold(unify) what presently are two different websites ï the main and the mobile,

under the same site, even if they are running different CMS and are hosted on different servers, possibly out of

different datacenters.

Please be aware that a setup like this might really stretch your sanity to a limit ï as you need to catch and

rewrite all of the URLs of significance that need to be matched across both content management systems. You

will also need to decide when to do simple URL rewrite the URLs in the transparent way - so that URL doesnôt

change in the browsersô address bar, as opposed to when to rewrite-redirect so that URL changes in the

browsersô address bar.

As usual, do your best to match known mobile UA to mobile tag. Again, you can have a number of tags

and very evolved matching, weôre simplifying here.

Next we rewrite the URLs that are different between desktop and mobile URL structure. You can rewrite

ñbehind the scenesò to where visitors are not aware of the rewrites or issue redirect to the proper URLs instead,

it is up you. Possibilities are endless.

We also specify a different OS Tags in the rewrites so that mobile content is filled from different origin

servers .

In addition to overriding the TTL and assigning a different OS tag, we can also ask to modify requestôs host

name, when a fill is needed from an origin server.

pattern /USnews.html simple 30

ua_tag_process

....

ua_url_rewrite mobile .+ /render?id=123 0 2

Notice how we override TTL to 0 and OS tag of 2 is specified as last param above

pattern /technews.html simple 30

ua_tag_process

....

ua_url_rewrite mobile .+ /render?id=223 0 2 m.acme.com

Notice how TTL is set to 0, OS tag of 2 is specified as AND

we request the hostname to be changed to m.acme.com

Main siteôs origin, default tag of 0 implied

origin 1.1.1.1

origin 1.1.1.2

Mobile siteôs origin, notice different network and we specify os tag of 2

origin 2.2.2.1 80 2

origin 2.2.2.2 80 2

http://www.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

100

Get your life backÊ
É 2001-2013 aiCache, Inc .

Same site (www.acme.com), same URL structure, different origins.

Very similar to the setups above. Keep the URLs intact, while specifying different os tags.

Overriding TTL, OS Tag and Host header based on UA tag.

In the 3 scenarios above, you might want to override the TTL for certain UA tags, possibly in addition to

selecting different origin servers. For example, when rendering pages for mobile devices, you might want to

render the ads into the page server-side and disable caching for such pages, while still caching the same URLs

for desktop browsers, as these render ads ñclient-sideò, using Javascript.

The TTL is optional 4
th
 parameter in the ua_url_rewrite directive. It is to follow the rewrite_to pattern.

The OS_Tag is optional 5
th
 parameter in the ua_url_rewrite directive. It is to follow the TTL value so that

if you were to request an os_tag, make sure to the specify the TTL even if you were to repeat the patternôs

default TTL value.

The substitution host name is optional 6
th
 parameter in the ua_url_rewrite directive. It is to follow the TTL

and OS tag values so that if you were to specify a sub hostname, make sure to the specify the TTL and OS tag

even if you were to repeat the patternôs default TTL value and the default OS tag of 0.

For example:

Default caching of 30 secs

pattern /USnews.html simple 30

ua_tag_process

....

ua_url_rewrite mobile .+ /render?id=123 10 0 m.acme.com

But modify to 10 seconds when serving mobile users, use default os tag of 0

and rewrite the hostname to m.acme.com

Dropping requests based on UA tag.

To drop requests, match UA to special tag of drop. Enable processing for the URLs where you want to

apply this drop logic, via ua_tag_process at pattern level.

http://www.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

101

Get your life backÊ
É 2001-2013 aiCache, Inc .

Simplify UA tagging with default tag.

You can explicitly tag requests with special tag of default. aiCache also implicitly assigns the same tag

when it could not obtain a UA match via neither ua_tag_patterns or ua_tag_file (matching is attempted in this

exact order).

 Letting to specify explicit matching to default tag might simplify and/or speed up you matching logic. For

example, you might want to match known desktop user agents to default before continuing to match the

remaining patterns.

While aiCache adds the tag to the cached response signature ï and you can observe that by using CLI

inventory command, the tag of default is skipped so as not to lengthen the length of the cache signature.

Letting users have a choice.

You can force-assign a tag to a request by using a cookie, this way aiCache wonôt attempt to obtain a tag

based on the value of the User-Agent string and will use the tag value from the cookie instead.

Use ua_tag_cookie setting to specify the cookie name. It is up to you when and how to set this cookie, if

ever. When setting the cookie, we recommend using the session cookie that expires when user closes their

browser. Otherwise the user will be pegged to a desktop or a mobile site for an extended period of time.

You can provide a link saying ñChoose main siteò and ñChoose mobile siteò in the page headers. When

clicked, custom server-side or client-side JavaScript logic could be then be executed ï that sets appropriate

cookie value.

While not obvious, you can delegate setting of the UA tags entirely to your server-side or client-side code,

if you so desire. Simply set the ua_tag_cookie to the value of your choosing and provide matching tag-driven

rewriting rules via ua_url_rewrite setting .

Modifying UA tag patterns and file content.

aiCache uses low overhead logic to allow for speedy matching of User Agents to tags. Should you need to

modify the configuration of either the patterns or exact UA matching, you can do so via usual zero-downtime

CLI reload. aiCache will purposefully leak some amount of RAM upon each such reload.

You will recover that RAM back when you perform complete restart of the aiCache.

aiCache V 6.291

 User Guide
www.aiCache.com

102

Get your life backÊ
É 2001-2013 aiCache, Inc .

[Deprecated] UA-driven URL rewriting and rewrite-redirection.

This feature is only available in mobile-enabled version of aiCache. It is deprecated starting with 6.267, use

UA tagging instead. When both features are combined, results will be unpredictable.

Occasionally you might have a need for User-Agent-specific URL rewriting. For example when request is

coming from iPhone, for news.html, you might want to redirect such request to iphonenews.html, while

requests coming for the same URL from Blackberries, you want to send to berrynews.html and so on.This is

where you can use UA-driven URL rewrites. These are configured in two steps.

First, you need to configure UA rewrites. We're trying to "compress" hundreds of different mobile user

agent string into a more manageable and much smaller set (see elsewhere in this Guide for more detailed

explanation of this feature). For example:

ua_sig_rewr .*BlackBerry8.* berry

ua_sig_rewr .*iPhone.* iphone

ua_sig_rewr .*Android.* android

When ua_sig_rewr are specified, the rewritten UA string becomes part of response's signature - for

cacheable responses. You can see that by using inventory CLI commands.

Next, in the matching pattern section, you can specify a wildcard match string, that is to be matched against

the rewritten UA string (in our case, these will be berry, iphone or android) and URL rewrite string. For

example:

pattern /news.html simple 30

....

ua_url_rewrite iphone /news.html /iphonenews.html

ua_url_rewrite berry /news.html /berrynews.html

ua_url_rewrite android /news.html /and roidnews.html

You can also configure a rewrite to an absolute URL by configuring the rewrite string so that the rewritten

URL starts with http: or https: . In this case, matching requests will be redirected to the specified location.

Please note that both URL match and URL rewrite strings are regexp strings, so you have full power of

regular expressions to accomplish complex rewrites, but the rewritten-UA match string is a simple wildcard

search string and NOT a regexp string. Of course the UA-driven URL rewrites can only happen when User-

Agent is provided in the request header.

As usual, you can use provided pattest tool to test your match and rewrite patterns. To see before and after

URLs, specify log_rewrite setting in global or website section of the configuration file. Please note that

cacheable response signature is formed from the original request URL, but it is the modified URL that gets

logged in the access log file.

aiCache V 6.291

 User Guide
www.aiCache.com

103

Get your life backÊ
É 2001-2013 aiCache, Inc .

Please note that when you enable both UA-driven URL rewriting/redirection (see below) and use

ua_pattern settings, explained later in this document, the UA-driven URL rewriting and redirection happens

first - as in it takes precedence over "plain" URL rewriting.

Please take care to not-redirect, by mistake, assorted search Bots and similar. For example, redirecting

Google search Bot to a mobile version of your site will result in Google search results for your content pointing

to your mobile servers - probably not what you'd want.

As a safety trigger of sorts, you can instruct aiCache to keep requests whose User-Agent headers are shorter

than certain length. To configure this, set ua_keep_length value at website level.

Rewriting request's Host header.

Occasionally you might have a need to rewrite request's Host HTTP header before request is sent to an

origin server. You can accomplish it via sub_hostname website or pattern-level setting. If both are set, pattern-

level setting takes precedence.

Let's imagine that your site relies on a third party site, api.somewhere.com for some kind of functionality.

But you want to send client traffic to a different site/domain, one under your control, api.acmenews.com,

while applying all of the aiCache benefits to the request/response traffic: caching, real time reporting and

alerting.

There are a number of uses you might find for this functionality - mostly in case of emergency, for

temporary workarounds, obtaining aiCache benefits with traffic to provider APIs and things of that nature.

Please do not abuse this feature for any illicit purposes.

Please note that this is different from CNAME DNS records that sometimes are used for somewhat similar,

but different function. With Host rewrite, the api.somewhere.com will receive requests with Host header

specified as api.somewhere.com, whereas with CNAMA aliasing, the destination web site receives the original

Host header. You might be able to request your API provider to setup their servers/application to respond to

api.acmenews.com, but it might be a time consuming endeavor or something that is not supported.

In general, when a request's specifies a valid hostname, that is matched to a website, through direct

hostname match, matching of one defined cname or matches one of defined wildcard , it is the request's Host

header that is forwarded to origin server, unless sub_hostname setting is set.

Please note that for non-cacheable requests, aiCache forwards all and any Set-Cookie headers from origin

servers back to the requesting clients. However, if origin servers respond with a domain-specific Set-Cookie

header(s), these will be ignored by the requesting browsers due to domain name mismatch. In other words,

clients might think they are accessing api.acmenews.com, while Set-Cookie response header instructs to create

a cookie for api.somewhere.com. Such Set-Cookie response headers would be ignored by browsers and

cookies won't get set. aiCache doesn't rewrite Set-Cookie domains for doing so could create a black hole with

most disastrous consequences.

aiCache V 6.291

 User Guide
www.aiCache.com

104

Get your life backÊ
É 2001-2013 aiCache, Inc .

Host-header-driven URL rewriting .

Occasionally you might have a need to rewrite incoming request's URL based on the value of request's

header. This feature can be used, for example, to accommodate for vanity URLs that are used frequently to

shorten longer URLs or to accommodate for special promotions.

For example, let's imaging Acme.com running promotions for spring product catalog and Nikey running

shoes. So ads go out, advertizing spring.acme.com and nikey.acme.com.

Yet in reality, when users go to these sites, we want to redirect:

spring.acme.com --> store.acme.com/catalog.aspx?collectionid=23423&promoid=232

nikey.acme.com --> sportinggoods.acme.com/catalog.aspx?collectionid=57465&promoid=434

aiCache allows to set such vanity sites with ease. Start by creating an aiCache website and specify both

spring.acme.com and nikey.acme.com as cnames and specify, via host_url_rewrite pattern-level settings the

desired redirection:

website

hostname store.acme.com

cname spring.acme.com

cname nikey.acme.com

....

pattern / simple 0 # To match all of the URLs

Below is a single line !

host_url_rewrite spring .+

http://store.acme.com/catalog.aspx?collectionid=23423&promoid=232

Below is a single line !

host_url_rewrite nikey .+

http://sportinggoods.acme.com/catalog.aspx?collectionid=57465&promoid=434

As you can see, the host_url_rewrite is a pattern-level setting, that takes 3 required parameters:

- a simple (non regexp) match string - to be used to match against request's host header.

- a regular expression that is to be matched against the original URL string.

- another regexp - a substitution string that will replace the request's URL string.

aiCache V 6.291

 User Guide
www.aiCache.com

105

Get your life backÊ
É 2001-2013 aiCache, Inc .

In order for redirection to happen, you must start the rewritten URLs with http:// or https:// . As usual, as

regular expressions are used in match and substitution strings, you can have very elaborate matching, including

regexp grouping and back references.

Normally aiCache issues a ñ302ò redirect. To change to ñ301ò redirect instead, set redirect_301 flag at the

pattern level.

aiCache V 6.291

 User Guide
www.aiCache.com

106

Get your life backÊ
É 2001-2013 aiCache, Inc .

Support for Geo-driven processing of requests.

Introduction to basics of Geo-targeting.

Many businesses have a requirement to modify appearance of content they serve based on geographic

location of the requesting user. Some of the typical uses of such geo-aware content serving are customizing

pages so that, for example, US visitors would see one version of content, while those coming from elsewhere in

the world would receive international version of content.

Another common use that most of us have been exposed to on the Internet, is serving of ads that are

appropriate for your location . For example, if thereôs some sort of a sale promotion in visitorôs zip code, an Ad

serving system could deliver the relevant promotion ad to you. Thereôs no limit to extent of customization that

can be performed based on such geo-targeting.

Geo-locating the requesting user.

The geo-targeting systems need to figure out your (geo) location, before any geo-targeting can take place.

Most of the time, a database of sorts is used, that ties your IP to a location. In other words, your IP address is the

key into the DB and the result is a record that contains a plethora of geo-information, such as Country,

State/Region, City, Postal/ZIP code etc.

The Geo databases of today are incredibly accurate. The accuracy is achieved by using of a number of

methods, some of which are obvious and some are quite interesting in their own right. For example, a common

technique used is so called triangulation. Having a number of set points (servers) with known locations, a

number of pings are issued to a particular IP and based on ping latencies, quite an accurate determination of that

IPôs location can be made.

Geo Database.

Thereôre a number of vendors that sell Geo DBs and/or provide Geo APIs. aiCache uses an integration to

MaxMind Geo DB (www.maxmind.com). Effectively, aiCache contains code that, when so configured, can

query MaxMind DB ï obtaining the geo information (aka geo-tag) about requests. You can then use the said

geo-tag to perform a wide range of actions ï in fact, identical to those you can perform with UA-based request

processing as described in previous section. You can block, redirect and rewrite requests, change TTL and/or

OS servers and so on, described in length later in this section.

It is your responsibility, as aiCache customer, to contact MaxMind directly and secure a right to/purchase

their Geo City Database and be in compliance with their License. aiCache is in no way affiliated with

MaxMind and cannot provide you with a version of the MaxMind Geo DB.

Effectively, all aiCache requires in the end is a .dat file that you point to via a simple configuration

directive. You are also advised to periodically refresh the file with a newer version to keep current.

MaxMind provides freely downloadable ñliteò versions of their Geo DB files . Again, it is your

responsibility to be in compliance with terms of use for any of MaxMind products.

http://www.maxmind.com/

aiCache V 6.291

 User Guide
www.aiCache.com

107

Get your life backÊ
É 2001-2013 aiCache, Inc .

Configuring aiCache Geo-processing.

You must legally obtain and suitably place, onto your system, both the MaxMind shared library,

libGeoIP.so and a MaxMind DB file. As a courtesy to our customers, we provide a pre-compiled MaxMind

library, as part of aiCache distribution file. You can also compile your own version of the library or obtain one

from MaxMind ï in order to upgrade to later version or if pre-compiled GeoIP library is not compatible with

your Linux distribution.

In order to compile your own library, download the ñCò API from MaxMind, untar it on a Linux system,

enter the resulting directory and perform the regular ñ./configure; make; make installò

Thereôs a number of global settings, one of which is mandatory: geo_dat_file . It must point to a valid

MaxMind City .dat file. For example:

server

é

geo_da t_file GeoLiteCity.dat

By default, the geo-tag contains only Country information in it. You can tell aiCache to add up to 3

additional components to the geo-tag: region/state, city and postal/zip code. You can configure the total number

of components via geo_parts global directive, must be between 1 (country only) and 4 (all four components).

The unmodified geo-tag has following format:

COUNTRY;REGION;CITY;POSTAL_CODE

For example:

US;NY;New York;10001

US;;;

US;NY;;

As you can see, you can end up with a great number of different geo-tags and much like with UA-driven

request processing, you will most likely want to ñcompressò this number down to a much smaller amount. For

example, you can decide to tag all of the users in the US as ñUSAò and the rest of the world as ñWORLDò.

Should lookup of the GeoIP database return no results, you can assign a default geo tag by using

geo_default_tag website-level setting.

To perform such reduction of geo-tags you need to use geo_tag_pat (similar to ua_tag_pat). In the

example below we say that whenever the geo-tag contain US, we will reduce it to USA. All other geo-tag

values will get reduced to WORLD.

aiCache doesnôt apply geo-processing to all incoming requests, you must configure it at pattern level by

setting geo_tag_process flag.

aiCache V 6.291

 User Guide
www.aiCache.com

108

Get your life backÊ
É 2001-2013 aiCache, Inc .

server

é

geo_dat_file GeoLiteCity.dat

geo_parts 4

website

hostname news.acme.com

geo_tag_pat US USA # if full geo tag contains ñUSò, rewrite it to USA

geo_tag_pat . WORLD # everything else gets reduced to WORLD

geo_default_tag USA # if geo lookup fails, assign this default tag

pattern / exact 120

geo_tag_process

geo_url_rewrite US A .+ http://us.acme.com # When Geo Tag matches USA

geo_url_rewrite WORLD .+ http://w orld.acme.com # When it matches WORLD

You can then configure aiCache to perform various actions based matching of geo-tag, via

geo_url_rewrite pattern level setting. The example above tells to rewrite-redirect incoming request for ñ/ò,

when US-based visitor is detected, to http://us.acme.com .

The geo_url_rewrite directive has the following format:

geo_url_rewrite EXACT_GEO_TAG URL_MATCH URL_REWRITE [TTL] [OS_TAG]

The GEO_TAG must be an exact match to the detected geo-tag. The URL_MATCH regex pattern is their

so that you could capture selective portions of the URL and use them in the URL_REWRITE regex pattern.

Should the rewrite pattern start with http or https, aiCache will perform rewrite-redirect (302 or 301, you

can configure which way you want it), as opposed to doing an internal URL rewrite.

The TTL and OS Tag are optional ï you can set either or both. Should you provide OS tag, make sure to

specify the TTL value, even if it is the same one already set at the pattern level.

Note that we didnôt specify the geo_parts setting, so that only requestorôs Country is identified, the

remaining 3 fields (region, city and postal code) are blank.

aiCache, upon successfully geo-matching incoming request, forwards the resulting, possibly reduced geo-

tag to origin server via a request header. You can configure it via geo_header_name global-level setting. It

defaults to X-Geo-Tag.

It will also forward the ñfullò version of the geo tag to the origin server via a request header. You can

configure it via geo_complete_header_name global-level setting. It defaults to X-Geo-Full-Tag.

Likewise, aiCache issues geo cookies back to the requesting user. You can configure it via

geo_cookie_name and geo_complete_cookie_name global-level setting. These default to geo_tag_cookie

http://us.acme.com/
http://world.acme.com/
http://us.acme.com/

aiCache V 6.291

 User Guide
www.aiCache.com

109

Get your life backÊ
É 2001-2013 aiCache, Inc .

and geo_full_cookie respectively. These are only returned for non-cacheable responses in order to avoid

caching them.

Both sending of the geo tags via header values to the origin server and returning them to the client, via

cookies, only happens for 0 TTL requests or, for cacheable requests , when geo tag is used as part of the cache

signature. This way both the origin servers and the requesting clients are notified about geo tags in ñsafeò

fashion: only when aiCache is told that response may vary based on the geo tag, will the geo tag be sent.

Otherwise, origin servers may vary output based on the geo tag , which aiCache would then cache without

taking the geo tag itself into account, which would be wrong behavior. Likewise, tagging clients with such

cookies, could result in same erroneous behavior unless geo tag is used in the signature.

When geo_cookie cookie is set in incoming request, aiCache skips the DB lookup and instead, uses the

cookie value as geo-tag. This way, you can affect processing by setting the geo-tag via server or client-side

code, by setting this cookie to appropriate value.

You can force aiCache to ignore this cookie and do a ñhardò DB-lookup to determine user geo-tag, by

setting geo_cookie_override global level setting.

Overriding TTL and OS Tag based on Geo tag.

You might want to override the TTL for certain Geo tags, possibly in addition to selecting different origin

servers. The TTL is optional 4
th
 parameter in the geo_url_rewrite directive. It is to follow the rewrite_to

pattern.

The OS_Tag is optional 5
th
 parameter in the geo_url_rewrite directive. It is to follow the TTL value so

that if you were to request an os_tag, make sure to the specify the TTL even if you were to repeat the patternôs

default TTL value.

For example:

Default caching of 30 secs

pattern /news.html simple 30

geo_tag_process

....

geo_url_rewrite US A .+ /render? content =123 10 5

Rewrite the URL and set TTL to 10 seconds when serving US users, set os tag of 5

Dropping requests based on Geo tag.

To drop requests, match geo tag to special tag of drop. Enable processing for the URLs where you want to

apply this drop logic, via geo_tag_process at pattern level.

aiCache V 6.291

 User Guide
www.aiCache.com

110

Get your life backÊ
É 2001-2013 aiCache, Inc .

Modifying requestôs cache signature using geo-tag.

You can set aiCache to append the geo-tag as an additional component to the cached response signature by

setting pattern-level flag of geo_tag_sig

This way, for example, you can have US version of home page cached separately from the same page for

other users. Or you can store cached NY content differently from the one for FL users. It implies that origin

servers/code would render the same request URL differently based on the value of geo-tag header, as forwarded

by aiCache. Exercise common sense when using this feature.

Geo and mobile tag processing order .

Should you configure both geo and mobile tag processing for a given URL (pattern), the geo-tag processing

takes precedence and happens first. Should geo-tag processing result in rewrite-redirect, the mobile logic never

sees the request.

Should geo-tag processing not act(rewrite-redirect etc) on the request, the mobile logic will next have a

crack at processing of the request. You can see that this can lead to some complicated decision making so

exercise common sense when setting it up.

You can, as an extreme example, have origin servers serve custom content based both on geo and mobile

tags. So, desktop users in US will have one version of content, different from one served to iPad users in US

and so on. Effectively, origin servers would need to act both on UA and Geo Tags as forwarded by aiCache,

while aiCache would modify the signatures of cached responses by including both tags into the cache

signatures. Troubleshooting this kind of setup wonôt be much fun and you need to control this complexity based

on your comfort level.

Testing Geo-processing .

Basically, it boils down to ñtrickingò aiCache into processing your requests as if they were coming from

different parts of the world/country etc and then observing if the geo rules youôve established function to your

liking.

Thereôre two basic ways to accomplish that:

¶ Use proxies ï that would relay your requests to aiCache so that aiCache sees the proxyôs IP address

instead that of your own. Thereôre a number of free proxies around around the world, you can look

these up using your favorite search engine

¶ Use hdr_clip (described in detail elsewhere in this Guide) setting. It allows you to forward client

IP as a request header. With this setting in effect, you can then use a tool such as ab or wget to

send requests with varying client IPs

Lastly, use log_rewrite setting to see how aiCache processes your requests.

aiCache V 6.291

 User Guide
www.aiCache.com

111

Get your life backÊ
É 2001-2013 aiCache, Inc .

Configuring Client-to-Origin Server Persistence.

Please note that OS persistence is not recommended for use with DNS-defined origin servers. If you

choose to use it, unpredictable results might ensue. Use of origin servers defined by IP addresses is

recommended when you need to use OS persistence.

Some sites might have a need to "pin" clients to specific origin servers. For example, a client A might need

to be pinned to origin server 1, client B to origin server 2, while client C might be served by any available

origin server.

The reasons for such requirement may vary but a common theme to them is a notion of "session" and

"session state". Let's imagine an E-Commerce site where a visitor is in process of populating a shopping basket

with assorted items. If such a site is served via a number of origin servers, then there must be a provision that all

of the origin servers that such client might access during a shopping visit, know of all the items that are placed

into the shopping basket. Otherwise, as different origin servers are accessed, items will seem to disappear and

reappear at random, a most frustrating situation for a shopper, as you can imagine.

Let's agree on some tech speak. We state that such shopper creates a session state as soon as (s)he logs in

and/or when first item is placed into the basket. The session state includes basket items. And as long as shopper

in our example is free to move between different origin servers, the session state must be somehow replicated

between all of them so it is available on any of them. Now, doing it reliably and quickly is no easy task - with

significant implications both on site's infrastructure, site's code and bottom line.
9

Fortunately, there's a much easier way to address this dilemma - we simply make sure that after a certain

activity takes place, the user is pinned to an origin server. Another common name used for this technique is

origin server persistence or sticky connections. When used, a given visitor always connects to a single origin

server. Other visitors connect to other origin servers, so in the end the load is still evenly distributed across all

of the origin servers.

To configure such visitor pinning (origin server persistence) simply specify os_persist setting in website

section(s) of the configuration file. Please do not combine this setting with leastconn or any other non-default

load-balancing metrics, as it will send most traffic to one of your origin servers !

If the pinned/requested origin server later becomes unavailable - for example it is disabled after failing a

health check, or the request fails when sent (and optionally retried) to the requested origin server, a new origin

9
 Sometimes the session state is shared through a database or some other form of centralized persistence mechanism. But most of

the time developers would simply use Session API that is available with most common frameworks, Java, PHP etc - where the session

is tied to a cookie (JSESSIONID etc) and the session state is kept in-memory and is local to a given server.

aiCache V 6.291

 User Guide
www.aiCache.com

112

Get your life backÊ
É 2001-2013 aiCache, Inc .

server is selected via the regular, simple round-robin selection process and client is notified of the new

selection.

In case of such origin server failure the existing session state is lost - requiring re-login, re-population of

shopping basket etc. But origin server failure is an infrequent event and such loss of session state is a small

price to pay for the resulting simplification of the overall setup and not having to replicate session state across

origin servers.

aiCache reports number of such ñpinnedò requests, served by each origin servers, per 5 second interval. The

report is available via all three main methods: CLI, SNMP and Web statistics.

Please note that you might see some fairly interesting scenario when you add an origin server and OS

persistence is enabled. What you're likely to see is that even when one or more of origin servers are added to a

farm that has OS persistence enabled, these new servers don't appear to be getting much of traffic after the

change takes effect (aiCache is restarted). The situation will correct itself over time.

You might find yourself in a situation where you want to disable certain URLs from pinning the requestor

to an origin server. To do that, simply create a matching pattern and tag it with disable_persistence flag. For

example:

hostname login.acme.com

....

patt ern /password_test.aspx simple 0

disable_persistence

....

Please note that when a request matches a pattern with os_tag specified, the os_tag takes precedence. To

better understand this, letôs imagine 2 successive requests sent from a browser: one for /a.html and second one

for /b.html. The request for /a.html is sent (forwarded by aiCache) to an origin server.

With os_persist set, the same origin server would be then chosen to fill the request for /b.html. However,

should /b.html have its own os_tag set, that os_tag takes precedence and a new origin server, with a matching

os_tag, is chosen to fill the request for /b.html.

An alternative way to enable origin server persistence is to use session cookie feature of aiCache, described

elsewhere in this Guide.

Please note that when an origin server be chosen due to use of os_tag, users will not be pinned to such

origin server, even if os_persist is specified for the matching website. In other words, such patterns will

effectively have their disable_persistence flag set by aiCache.

Assuring OS persistence in mixed HTTP/HTTPS setups.

Lets imagine news.acme.com is accessed via both HTTP and HTTPS protocol. You need to have OS

persistence setup so that after a user is persisted to a an origin server, the same origin server is used for both

aiCache V 6.291

 User Guide
www.aiCache.com

113

Get your life backÊ
É 2001-2013 aiCache, Inc .

HTTP and HTTPS request. For example, after accessing http://news.acme.com/, user is redirected to

https://news.acme.com/loginform.html, then user's login name and password are posted to

https://news.acme.com/login_verify.php - which upon successful login shall redirect user to

http://news.acme.com/home.php. You need to ensure that all of these URLs are obtained from the same origin

server (same OS IP).

There're two different ways to assure that and we shall describe them here.

The easiest way to assure that is to have aiCache terminate the HTTPS traffic while forwarding the requests

to origin servers over HTTP. This will assure that session stickiness persists for both HTTP and HTTPS

requests.

Another way is to setup 2 different accelerated sites in aiCache and use aiCache's sub_hostname ,

match_http_only and match_https_only website settings. For example:

...

listen http * 80

listen https * 443 news.cert news.key AES256- SHA:RC4- MD5

...

website

############################### ####### "Plain" site

hostname plain_acme

cname news.acme.com

match_http_only

os_persist

sub_hostname news.acme.com

...

...

origin 1.1.1.1 80

origin 1.1.1.2 80

origin 1.1.1.3 80

Secure site

hostname secure_acme

cna me news.acme.com

match_https_only

os_persist

sub_hostname news.acme.com

use_os_https

...

...

origin_https 1.1.1.1 443

origin_https 1.1.1.2 443

origin_https 1.1.1.3 443

Notice how we setup two accelerated sites, one configured for HTTP traffic only and the other one

configured for HTTPS traffic only. We made sure we specify origin servers in the same IP address order.

aiCache V 6.291

 User Guide
www.aiCache.com

114

Get your life backÊ
É 2001-2013 aiCache, Inc .

Please note that you can also use match_http_only and match_https_only settings in pattern sections,

effectively making patterns protocol specific.

For convenience reasons we also gave these site make-believe names of plain_acme and secure_acme .

This way you can see these two sites as two separate and easy to distinguish entities in aiCache reporting

screens and can manage them separately from each other. To make sure aiCache doesn't send these fake names

as values of Host HTTP header, we have configured aiCache to replace the Host header with news.acme.com.

With this simple technique we have assured that OS persistence will work in the fashion that we require.

Origin Server tagging - selecting origin servers based on request's URL.

You might have a need to be able to select origin servers based on request's URL. For example, you might

need to make sure that requests containing login.jsp are only sent to origin servers 1.1.1.1, 2.2.2.2, 3.3.3.3,

while requests containing search.jsp need to go to origin servers 4.4.4.4 and 5.5.5.5.

Possible reasons for us of this technique include server partitioning (aka freshly minted sharding) - where

different user accounts reside on and are served by, different origin servers and/or database servers. Or you may

need to configure all POST requests to go to "write" servers, while read requests are directed against "read"

servers. Another example: you can send all users with premium accounts to a one farm of servers, while

relegating less fortunate visitors to lesser servers and so on.

Different example might include a situation when you're adding new functionality to your site, to be served

by a new server farm (and may be, completely different framework) and you want to make sure that requests are

seamlessly and properly routed out across your existing and new servers.

To get such request-driven-origin-server-selection to work, aiCache allows to specify origin server tag as

an optional pattern attribute. You can also tag your origin servers with origin server tags. Now, when request

matches a pattern and that patterns specifies an origin server tag, aiCache make sure request are only sent to

origin servers that have matching tags.

You configure pattern's origin server tag via os_tag directive in pattern section of the configuration file.

Each pattern can have a single origin server tag defined. For example, we define a simple, 0 TTL pattern

containing .AAA and request that matching patterns are sent to origin servers that are tagged with 5:

pattern .AAA simple 0

os_tag 5

You configure origin server's os tag by adding the tag number as last parameter, following origin server's IP

address and port number. For example, here we define 3 different origin servers, all tagged with 5:

origin 1.1.1.1 80 5

origin 1.1.1.2 80 5

aiCache V 6.291

 User Guide
www.aiCache.com

115

Get your life backÊ
É 2001-2013 aiCache, Inc .

origin 1.1.1.3 80 5

You can also configure aiCache to send only a fraction of matching traffic to tagged OS servers, using

decimate_os_tag directive. When specified, matching requests are to be filled, in decimated fashion, only

from origin servers that have matching origin server tag. Think of it as a way to bleed a small, controlled

portion of traffic to the matching OS.

pattern .AAA simple 0

os_tag 5

decimate_os_tag 10 # Send only 10% of traffic to the tagged OS.

For example, when set to 10, every tenth request (10%) will be filled from an OS with matching OS Tag, all

other matching requests will be filled from ñregularò OS.

Please note that in order to tag origin servers, you must provide origin server port number, even if it is the

default HTTP port number of 80. If you don't, then the tag number can be mistaken for port number and your

setup will fail to work. Tag value must be under 254.

The patterns can specify any TTL, including 0 . In other words the responses don't have to be cacheable.

Again, you have full power of patterns, both simple and regexp at your disposal so you're only limited by your

imagination.

Please note that os_tag of 100 has a special meaning - it is used to mark an OS server or servers as servers

of "last-resort" . See next section for more information on this feature.

Additionally, should an origin server be chosen due to use of os_tag, users will not be pinned to such origin

server, even if os_persist is specified for the matching website. In other words, such patterns will effectively

have their disable_persistence flag set by aiCache.

Origin Server of last-resort.

Some site resort to having a "disaster-recovery" read-only version of their sites maintained (for example,

some sites use periodic, controlled, web-crawling of main sites), so that in case of a catastrophic failure with

their main hosting infrastructure, user traffic could be served off such content replica.

To configure such origins of last resort (OSLR), simply create one or more of origin servers with os_tag of

100. When aiCache fails to fill a request from regular origin servers and, in case of cacheable request, no stale

aiCache V 6.291

 User Guide
www.aiCache.com

116

Get your life backÊ
É 2001-2013 aiCache, Inc .

version of cached content is available on aiCache servers, it will attempt a fill again an origin server of last-

resort.

Please note that when website health checks are configured, aiCache will perform regular health checks

against such origin servers of last-resort, so they must be able to properly respond to the health checks,

otherwise aicache will fail these origin servers just as it would any regular origin server failing a health check.

Detecting a failed LR OS in timely fashion is beneficial, as it allows aiCache to deal with this condition in

proper fashion, as opposed to trying to direct requests at a bad server.

Origin servers defined with os_tag of 100 are only used as OS of last resort and are not used to deliver any

traffic under normal operating conditions.

When configuring aiCache with OSLR, make sure you also configure ñregularò origin servers. If you only

define OSLR, without defining any regular OS, aiCache will start and/or restart normally, but the behavior will

be unpredictable.

Cookie-driven Caching Control.

Quite often, a Web pageôs content is affected based on whether a cookie is present/set in web request. This

mostly happens when a registered user logs in into a web site. Now content of a web page might be different for

such logged-in user, as opposed to other, ñanonymousò visitors. For example, a personal greeting can be shown

on top, some other content might be affected by userôs preferences etc. In other words, while a given page looks

the same for all the anonymous users, it might look different for those who log in.

With Cookie-driven freshness control aiCache allows you to have your cake and eat it too. You can cache a

page for most visitors (such as anonymous users in the example above), or serve it from origin servers every

time for other visitors (such as registered/logged-in ones in the example above), all based on whether a cookie

is present in the request.

Configure a matching pattern as usual, specifying a non-0 TTL pattern for some URLs. The only difference

is specifying an additional parameter in the pattern section: 0ttl_cookie (that's a number '0'). When this cookie

matches a cookie set in client request, the TTL for the document will be set (overridden) to 0. For example:

0ttl_cookie userid

For anonymous users, that are not logged in and thus donôt have that cookie set, the page will be cached,

with all the regular benefits of caching. Please note that you can specify multiple 0ttl_cookie settings, presence

of any of them in request will result in matching pattern's TTL being reset to 0.

For example on a blog site, most users are anonymous browsers of blogs. They will enjoy fast response

times and origin servers will certainly appreciate corresponding reduction of traffic. Yet, as soon as blogger logs

in, certain URLs can be made non-cacheable, so that the blogger will see "EDIT", "POST" links and such. All

we need to configure such setup is to figure what cookie gets set when a user logs in and configure that cookie

as a 0ttl_cookie for certain patterns.

aiCache V 6.291

 User Guide
www.aiCache.com

117

Get your life backÊ
É 2001-2013 aiCache, Inc .

In some cases, youôd like to look not for a certain, static cookie name but for a certain pattern in the

requestôs Cookie header. For example, Drupal might use semi-random session cookie names, so that you cannot

use 0ttl_cookie setting. But if you know that all of the cookie names or values match certain pattern, you can

then configure aiCache to look for such patterns in requestôs Cookie headers by using 0ttl_cookie_pat setting.

For example:

0ttl_cookie_pat SESS.+= # Match any cookie name that starts with SESS

The opposite of 0ttl_cookie is cache_cookie pattern-level setting. When set, it indicates that request is to

be considered cacheable only when the specified cookie is present. For example:

cache_cookie jscapable

Here's how you could use this feature. A large number of mobile devices (cell phones, PDAs etc) are

capable of Javascript, but have it disabled at the factory. So even when you know requesting device type, make

and model, you can never be quite sure if the requesting device is enabled for Javascript.

Yet whether or not a device supports Javascript is frequently the difference between being able to cache

content and not being able to do that. For example, JS-enabled devices can render the ads client-side, so you

don't have to run the ad rendering logic server-side. As a result, the page content for such JS-enabled can be

cached.

In order to find out if a device is truly JS-enabled, you can imbed a small JS scriplet in your responses. The

scriplet can create a cookie - let's call it "jsenabled". Now each and every request from JS-enabled devices will

carry jsenabled cookie in it. When such cookie is present, you can return cached content, while when the

cookie is absent, the request is declared non-cacheable and regular non-cacheable request processing logic

takes place.

In server side code, you can tailor the content output so that the code delivers cacheable or non-cacheable

versions of content, by relying on aicache httpheader header (remember these are the headers that are always

sent to origin servers when aiCache is requesting cacheable response).

Such use of cache_cookie is not limited to accommodating of mobile devices, feel free to use it for any

other purpose you can think of.

Content-driven Caching Control.

You might have a need to control whether a not a web page is cacheable, based on page's (response)

content. For example, www.acmenews.com/breakingnews.aspx web page is normally cached for 10 seconds,

unless editorial team decides to publish a survey (poll) on that page, in which case you cannot cache the page

for as long as the poll is active. As soon as poll is removed from the page, you can restore the caching back to

10 second.

aiCache V 6.291

 User Guide
www.aiCache.com

118

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache offers support for this kind of scenarios via so called "Content Driven Caching" or CDC for short.

Here's how it works.

First, you define a cacheable pattern, just as usual. Then you add one or more of cdc_pattern pattern-level

settings under the matching pattern, specifying regular expression match strings. With these specified, aiCache

will analyze response bodies, looking to match the response body to a defined cdc_pattern.

Should a match be found, aiCache temporarily overrides TTL for the matching response and sets it to 0.

Effectively, the matching web page is declared non-cacheable. Periodically, aiCache will attempt to match the

page's content again and should no match be found, the page will have its TTL restored back to the one

specified by the pattern. You can control how frequently such-rechecking is done by setting cdc_interval

pattern level setting, it defaults to 5 seconds.

website www.acmenews.com

...

pattern breakingnews simple 10

cdc_pattern acme\ spoll

cdc_pattern acme \ ssurvey

In the example above, we match response's body (content) to see if contains "acme poll" or "acme survey"

in it. Should a match be found, aiCache will declare the page non-cacheable and no longer serve it out of cache.

Sometimes, you might find it easier to match for auxiliary content URLs instead. For example, you might know

that every time a poll is published on a page, the poll's Javascript is included into the page so you can look for

that Javascript URL instead. For example:

cdc_pattern userpoll.js

cdc_pattern usercomment.js

Matching for such JS "includes" might be less resource intensive, as they are often located at the very

beginning of the page's HTML, so aiCache can find the match faster.

As long as you know the likely location of the cdc_pattern in the response body, you can give aiCache

another hint, via cdc_bytes setting (specified under the same pattern). When specified, aiCache will only

analyze first cdc_bytes bytes of response, as opposed to the whole response body, for possible match to

cdc_pattern. This can save significant amount of overhead, especially when response bodies are fairly large.

Let's consider another situation. Acmenews's editorial team might decide to publish polls or enable

comments, in any of the following pages: usnews.jsp, worlnews.jsp, marketnews.asp and cenews.asp. As you

can see, all of these URLs have a common "news.jsp" component to them, so you can create a single pattern to

cover all of them:

website www.acmenews.com

...

pattern news.jsp simple 10

cdc_pattern userpoll.js

cdc_pattern usercomment.js

aiCache V 6.291

 User Guide
www.aiCache.com

119

Get your life backÊ
É 2001-2013 aiCache, Inc .

Now all of the mentioned pages will have their content analyzed for CDC-overrides, independently of each

other. In other words, usnews.jsp might end up in CDC-override state, while worldnews.jsp is still served from

cache.

The handling of page with the CDC-overridden TTL is no different from the way 0TTL requests are

normally handled by aicache. Specifically, all of the cookies are sent both to OS and back to the requesting

client.

When page is in "regular", cacheable state, aiCache only attempts to match the response body against the

CDC patterns when the page is refreshed, so we recommend you keep TTL for such pages low enough, so

aiCache can detect the change in the page's content quickly enough. As mentioned earlier, when in "CDC-

override" state, the matches are performed every cdc_interval seconds - every 5 seconds by default.

When aiCache needs to perform content matching for CDC patterns, it requests the response in plain, non-

compressed form. This way no CPU cycles need to be spent by origin servers to compress the response and by

aiCache to un-compress it, before matching could be performed. After such analysis and before being sent to

the requesting client(s), the response will be compressed by aiCache, in accordance with on-the-fly compression

settings and client browser indicating support for compression.

When dealing with large volumes of traffic, enabling cdc_pattern processing might increase system load.

We suggest increasing number of workers to better utilize all of the available CPU cores. For example, having 8

CPU cores and only 2 workers, the aiCache might be constrained due to low number of workers, so you might

consider increasing it to match number of available cores.

Content-driven request fallback or retry control.

You might have a need to safeguard against intermittent origin server failures where a bad response body is

occasionally sent in response to a cacheable request. The only indication of bad body is something in the body

itself (as opposed to connection error, wrong response size or a bad response code ï aiCache guards against

those via different mechanisms, described elsewhere in this Guide).

In this case you may use fb_pattern setting. One or more of these regular expression match patterns can

be specified per pattern. Upon obtaining of a response, aiCache will match response body to each defined

fb_pattern and should a match be found, aiCache will attempt to fallback to previous, stale copy of cached

response, assuming such stale cached response is available.

 As long as you know the likely location of the fb_pattern in the response body, you can give aiCache

another hint, via fb_bytes setting (specified under the same pattern). When specified, aiCache will only analyze

first fb_bytes bytes of response, as opposed to the whole response body, for possible match to fb_pattern. This

can save significant amount of overhead, especially when response bodies are fairly large.

When aiCache needs to perform content matching for FB patterns, it requests the response in plain, non-

compressed form. This way no CPU cycles need to be spent by origin servers to compress the response and by

aiCache to un-compress it, before matching could be performed. After such analysis and before being sent to

aiCache V 6.291

 User Guide
www.aiCache.com

120

Get your life backÊ
É 2001-2013 aiCache, Inc .

the requesting client(s), the response will be compressed by aiCache, in accordance with on-the-fly compression

settings and client browser indicating support for compression.

When dealing with large volumes of traffic, enabling fb_pattern processing might increase system load.

We suggest increasing number of workers to better utilize all of the available CPU cores. For example, having 8

CPU cores and only 2 workers, the aiCache might be constrained due to low number of workers, so you might

consider increasing it to match number of available cores.

Please note that the same basic mechanism of matching of response bodies against FB patterns can be used

to determine when a non-cacheable response is bad and request a re-try. The only change would be declaring

the URL pattern as 0 TTL.

aiCache V 6.291

 User Guide
www.aiCache.com

121

Get your life backÊ
É 2001-2013 aiCache, Inc .

URL-triggered Cache Freshness Control.

Sometimes, you won't be able to use cookie-driven cache freshness control. It can happen when a session

cookie is established even before user logs in - so using such session cookie as cache busting indicator is not

possible.

Yet another scenario could involve an e-commerce site - where a user can place an item into a shopping

basket, without logging in first. Again, you might not be able to use a presence of a cookie in the request as

cache busting indicator.

aiCache allows to account for these scenarios with a URL-triggered cache busting setup. You effectively

tell aiCache: after a user visits certain URLs, I want to disable caching for some of otherwise cacheable URLs.

For example, after basketAdd.jsp is visited, you want to disallow caching for product pages: showProduct.jsp,

as these will now have display of content of shopping basket in them.

You can configure one or more of such cache-busting-triggering URLs via 0ttl_url settings at website

level. The setting takes a single parameter, that is used to perform partial matching against request URL. For

example:

0t tl_url basketAdd.jsp

0ttl_url login .jsp

Now, when any of these links are visited, aiCache sends back a cookie: aicache0ttlcookie, set to yes. You

can change the cookie's name to a different name if you like, by using 0ttl_url_cookie setting, at website level.

After aiCache sends the cache busting cookie back to the client, the processing logic is similar to regular

cookie-driven freshness control. You configure a matching pattern as usual, specifying a non-0 TTL pattern for

some URLs. The only difference is an specifying an additional parameter in the pattern section: 0ttl_cookie

(that's a number '0'). When this cookie matches a cookie set in client request, the TTL for the document will

be set (overridden) to 0. So this is what you'd add under related pattern, assuming you have not changed the

default cookie name of aicache0ttlcookie

pattern showProduct.jsp simple 120

0ttl_cookie aicache0ttlcookie

Now for those users that have not visited any of the triggering URLs and thus donôt have that cookie set,

the pages are cached. Users that have visited any of the triggering URLs, will have caching disabled for any of

the patterns that have matching 0ttl_cookie setting specified.

Allowing Cookie pass-through for cacheable responses.

By default, aiCache doesn't allow any Set-Cookie headers to be stored in cached responses in order to

safeguard from potential sharing of private data. So when a cacheable response, coming from origin servers,

contains one or more Set-Cookie HTTP headers, these are always filtered out and it is the "sanitized" response

header that is cached. Again, it is done on purpose as cookies are frequently used to "personalize" responses,

might act as pointers to HTTP(S) session information and/or directly store private user data.

aiCache V 6.291

 User Guide
www.aiCache.com

122

Get your life backÊ
É 2001-2013 aiCache, Inc .

However, if a particular setup requires some cookies to be allowed to pass from origin server and into the

cached response, you can enable it via pass_cookie setting, under proper URL matching pattern. You configure

a matching pattern as usual, specifying a non-0 TTL pattern for some URLs. Then you provide an additional

parameter in the pattern section: pass_cookie.

pass_cookie lastvisit

Now, for cacheable responses, the matching cookie ("lastvisit" in this example) will be allowed to pass into

the cached response. Multiple pass_cookie directives can be specified per pattern.

Please note that 0-TTL responses (non-cacheable responses) always pass all of the cookies (if any are set)

from origin servers back to the requesting browser, so pass_cookie directive is only applicable to cacheable

responses.

If you have to use this setting, please make sure not to enable caching of private user data by mistake. For

example, allowing caching and forwarding/sharing of session ID or user ID cookies is a very bad idea.

Signatures of cached responses.

By default, aiCache uses hostname and URL of request, possibly modified by removing some parameters

or discarding the complete query string, and one of "p0","p1","g0","g1" suffixes, as a signature for cached

responses. However, in addition to these 3 basic parts of any cached responses signature, more optional

components could be added - including a Cookie (sig_cookie), User-Agent string (sig_ua) or a rewritten User-

Agent string, value of an arbitrary requestôs header (sig_header) and last, request's Accept-Language header.

To reiterate - every cached response has a signature. The signature will always have at least 3 parts to it,

separated by a single white space:

- hostname

- URL : path+ optional (possibly modified) query

- "p0" or "p1" for plain, non-compressed responses and "g0" or "g1" for gzip-compressed responses.

You can see the cached response signatures in clear, enclosed within angle brackets (>signature<), when

you run any of CLI "inventory" commands. In order to affect cached responses (for example, expire them), you

need to specify either an exact signature of a cached response or a matching pattern. You can obtain exact

signature by copying and pasting the string within the angle brackets, as output by any of the CLI inventory

commands.

For example, /home.html, when cached in non-compressed form, for an accelerated domain of

aaa.bbb.com, could have a complete signature of (as displayed by \ CLI inventory command):

>aaa.bbb.com / home.html p1<

As you can see, aiCache's default behavior is to store separate versions of cached responses for HTTP1.1

and HTTP1.0 requests (the p1 vs p0 and g1 vs g0 signature components). However, in some scenarios you

aiCache V 6.291

 User Guide
www.aiCache.com

123

Get your life backÊ
É 2001-2013 aiCache, Inc .

might know for a fact that there are no differences in responses from origin servers, across both HTTP

versions. In such case you might find it beneficial to tell aiCache to store unified cached responses, where same

cached response, plain or cached, is used for both HTTP1.1 and HTTP1.0 request. To accomplish this, please

set unified_cache at global level of the aiCache config file. The setting is a flag and requires no value.

unified_cache.

Doing so can significantly decrease size of RAM used by cached responses (as we don't have to store 2

versions of same content), help increase cache hit ratio (as both request types are now fed the same response)

and decrease traffic to origin servers.

By default, the hostname part of the signature comes from website setting value, so that no matter the

hostname value of the requestôs Host header, as long as it matches the website setting value or any of possible

cname values, the cached responses will all have the same signature, for the same URL and thusly only one

copy of the shared response exists.

For example, with the following configuration:

website www.acme.com

cname a.acme.com

cname b.acme.com

requests for www.acme.com/1x1.gif, a.acme.com/1x1.gif and b.acme.com/1x1.gif will be all cached as a

single cached response. This is the default behavior and mostly likely is how youôd configure most cached

websites.

If you instead desire these 3 URLs to be stored as 3 distinct and separate entries, you can specify

sig_req_host setting at website level. It is a flag and requires no value. Note that such setup will result in higher

memory consumption.

Unifying cached content for different websites.

You might have a setup when a number of different sites are cached via aiCache, for example a.com,

b.com and c.com. Yet some of the content on these sites is identical and youôd like to cache(store) only a single

copy of it, effectively sharing it across different sites.

For example, letôs assume that you want to share URLs that contain /css and /images prefix. To accomplish

this, we simply tell aiCache to use a different signature prefix ï instead of matching websiteôs hostname, we

configure a different prefix via pattern-level sig_hostname setting. For example:

website a.com

pattern /css simple 1d

sig_hostname css_content

website b.com

pattern /css simple 1d

sig_hostname css_content

http://www.acme.com/
http://www.acme.com/1x1.gif
http://www.acme.com/1x1.gif
http://www.acme.com/1x1.gif

aiCache V 6.291

 User Guide
www.aiCache.com

124

Get your life backÊ
É 2001-2013 aiCache, Inc .

website c.com

pattern /css simple 1d

sig_hostname css_content

Now, when a request is made for a.com/css/main.css, b.com/css/main.css or c.com/css/main.css, same

cached response will be returned, saving the overhead of having to maintain 3 different copies of the same

content.

As usual, make sure that the URLs are cacheable and are not website-specific in any way.

Adding a Cookie value to signature of cacheable responses.

By default, aiCache uses hostname and URL of request, possibly modified by removing some parameters

or discarding the complete query string, and a "p0","p1","g0","g1" , as a signature of (pointer to) cached

responses. However, some sites might serve different cacheable content in response to requests for same URLs,

depending on a value of a cookie present in the request.

For example, if a cookie called "connection_type" is set, different responses might be sent in response to

request for home page (such as index.html) when cookie is set to "high", "medium" or "low". Or a cookie

called "language" might be set to "en", "fr " etc. To enable caching and sharing of such responses, aiCache

allows you to use this cookie and its value as part of cache signature. Simply specify, in proper website or

pattern section, following setting:

sig_cookie connection_type

Now, for cacheable responses, the matching cookie (connection_type in this example) and its value are

added to the response's signature and proper version of cached response is served in response to requests with

different value of the cookie set.

When a response to such requests must be obtained (first fill or refresh of stale cached response), the

appropriate cookie and its value are passed to origin server. This is in contrast to normal handling of cacheable

requests, when no cookies are allowed to pass from users to origin servers. Such blocking of cookies for

cacheable responses is done on purpose, as cookies are frequently used to "personalize" responses, might act as

pointers to HTTP session information and/or directly store private user data.

Multiple sig_cookie can be configured per pattern or website. You can also combine sig_ua (see next

section), sig_language and sig_cookie settings - in which case both the selected cookie value(s), Accept-

Language and User-Agent headers are used as part of signature.

Please note that as usual, pattern-level setting of sig_cookie overrides (supersedes) website-level setting of

the same name, if both are set. When sig_cookie is not detected in cacheable request, the request cache

signature will look as if no sig_cookie was specified.

When using this feature, please make sure not to enable caching of private user data by mistake. For

example, allowing caching of session ID or user ID cookies is a very bad idea.

aiCache V 6.291

 User Guide
www.aiCache.com

125

Get your life backÊ
É 2001-2013 aiCache, Inc .

Adding User-Agent request header to signature of cacheable responses.

By default, aiCache uses hostname and URL of request, possibly sanitized by removing some parameters

or discarding the complete query string, and a "p0","p1","g0","g1" , as a signature of (pointer to) cached

responses. However, some sites might serve different cacheable content in response to requests for same URLs,

depending on a value of a User Agent HTTP header present in the request. As you most likely know already,

User Agent HTTP header identifies browser's make and model.

For example, a site serving mobile clients might serve responses whose formatting (content) depends on

exact mobile device/browser. To accommodate for such clients, while allowing for caching of responses, we

must use User-Agent information as part of cached response signature. So when a URL named "news.html" is

accessed by 3 different mobile devices, we shall have 3 different responses cached - each containing mobile

device's User Agent string.

To enable such behavior, please specify sig_ua setting in website section of the configuration file. All of

the cacheable requests will now have User Agent information appended to their signatures. As using this feature

has potential to significantly increase the size of response cache (due to multiple versions of same URLs

getting cached), use it only when necessary.

You can also combine sig_ua and sig_cookie (see previous section) settings - in which case both the

selected cookie value and User Agent string are used as part of signature. In this case it is the User Agent string

that becomes the signature's suffix.

Adding reduced/rewritten User-Agent request header to signature of
cacheable responses.

This feature is only available in mobile-enabled edition of aiCache.

It is most desirable to accommodate for different mobile devices in a fashion that doesn't require changing

the URLs - so that no matter what mobile device is being used, news page is always accessed as /news.html,

sports section is always /sports.html and so on. An alternative solution where URLs change, say by prefixing

every URL with a device type, to accommodate for the device type is clearly less elegant.

Related to the previously discussed feature, this one allows you to rewrite/reduce User-Agent strings to a

smaller subset and use the rewritten/reduced values as part of cacheable response signature.

The problem this feature addresses has to do with a great variety of mobile devices currently available.

Every firmware revision, different mobile providers/carriers/markets all result in a different User-Agent strings

sent by mobile device, making it a challenge to accommodate for all of these devices. Yet at the same time the

great variety of mobile devices on the market can be reduced to less than a dozen of distinctly different devices

(device families). So Blackberries can be grouped into may be 2 different sets, Android devices into its own set

and so on, based on capabilities, support for CSS, Javascript and available screen sizes.

aiCache V 6.291

 User Guide
www.aiCache.com

126

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache allows you to accomplish just that. You specify rewrite rules for User-Agent strings. The

rewritten/reduced User-Agent strings are then used as part of signature of cached responses.

The same "compressed" User-Agent string is also forwarded as X-UA-Rewrite header in requests sent to

origin servers. The origin servers (server-side code) can then programmatically access and act on this header

value, with a goal of modifying responses to accommodate for mobile device differences - for example

resorting to Javascript-free versions of content for devices that don't support Javascript, resizing the images to

accommodate for different screen sizes and so on. Of course the server-side code can also tailor the responses

based on the actual value of User-Agent string (aiCache never modifies it, it is forwarded verbatim from

requesting device to the origin servers) - but then the server-side code has to accommodate for a much larger

variety of devices.

Reducing the large number of different User-Agent strings to a much smaller subset also has a positive

impact on caching of responses - allowing to achieve much higher cache hit ratios and to proportionally reduce

the traffic and demands on origin server infrastructure (Web Servers, DB servers etc). It also allows to greatly

simplify the logic required to handle the variety of mobile devices available on the market today.

To configure the User-Agent rewrite/reduction, use ua_sig_rewr setting(s) in website section of the

configuration file. Each of these must have two parameters: the matching pattern and the rewrite string, very

similar to how we rewrite the URLs themselves (see elsewhere in this manual).For example:

ua_sig_rewr .*BlackBerry8.* berry8

reduces all UA strings that contain BlackBerry8 in it to berry8 - reducing many different possible UA

strings to just one. You can reduce other UA strings in similar fashion by adding more of ua_sig_rewr

directives.

The ua_sig_rewr takes optional third parameter: 0ttl_ua. Requests with matching User-Agent headers

have their TTL reset to 0, when request's URL match patterns that have same 0ttl_ua flag set.

The use and purpose of this feature are best explained with an example. Let's imagine you have a web site

for mobile clients. On that website you have a page: /news.html . The page shows breaking news and also

serves some ads. When requesting browser (mobile device) is Javascript enabled, you want the device to obtain

and render the ads via device-side (client-side) Javascript. Yet if mobile browser is incapable of Javascript, you

need to render the page server-side and then it cannot be cached.

To accomplish this, we create a number of ua_sig_rewr settings, matching the multitude of devices we

intend to deal with. We assume that all of iPhone and Blackberries are capable of Javascript:

ua_sig_rewr .*BlackBerry8.* berry8

ua_sig_rewr .* iPhone .* iphone

Next we declare that any other devices are not Javascript capable, so we want to disable caching for all

other device types. We accomplish this by adding 0ttl_ua to the end of the ua_sig_rewr string like so:

aiCache V 6.291

 User Guide
www.aiCache.com

127

Get your life backÊ
É 2001-2013 aiCache, Inc .

ua_sig_rewr .+ non_js 0ttl_ua

 Now we define a simple pattern for /news.html page and provide 0ttl_ua setting under that pattern's

definition:

pattern / news.html 60

0ttl_ua

Now Blackberry and iPhone customers are served cached version of the page, while all other mobile clients

are not allowed to receive cached version of the very same /news.html page. Instead, these two are forwarded

to the origin servers and have their ads rendered by server-side code. Of course, the example implies that

/news.html is rendered by the server-side code in a fashion that makes it possible for client-side Javascript ads

rendering for Iphone and RIM Blackberry devices, while rendering the ads server-side for òlesser" devices that

do not support Javascript.

A bit more on User-Agent matching patterns: please note that you must use "\s" for white spaces - if you

want to match any white spaces in the match string. The replacement string can use back-references to match

groups in the match string, using " \1", " \2" syntax to reference first, second matched groups and so on.

To assist with pattern testing, aiCache distribution comes with pattest command line tool. Here's an

example of pattest in action:

./pattest - p '.*Blackberry \ s7.*' - s 'aaaBlackberry 7xxx' - r 'berry7'

[Success]: Rewrote original string:

>aaaBlackberry 7xxx<

 To new string:

>berry7<

 Using pattern:

>.*Blackberry \ s7.*<

 And replacement string:

>berry7<

When using pattest, we recommend enclosing all three of the parameters in single quotes, to prevent

possible expansion/interpretation of the special symbols, if any, by shell.

You can also request all of UA rewrites/reductions to be logged into error log file, via log_rewrite global

setting. Clearly, it is not recommended to enable such logging on a heavy-traffic production site, use it to fine

tune the rewriting and then turn it off.

When ua_sig_rewr settings are configured for a website, aiCache uses the rewritten User Agent string as

part of cached response signature - you will be able to see it clearly and in plain view when running any of the

CLI inventory commands (i, sit, sir, sif, sis).

Forwarding User-Agent header to origin servers, for cacheable requests.

By default, aiCache strips out cacheable requestôs User-Agent (UA) when forwarding such requests to

origin servers (for first-fill or refresh). The cacheable response should not depend on the value of UA header,

aiCache V 6.291

 User Guide
www.aiCache.com

128

Get your life backÊ
É 2001-2013 aiCache, Inc .

plus stripping it out saves valuable bandwidth and relieves OS from having to process this header. Should the

response depend on the UA, please see the previous chapters on how to configure use of (possibly rewritten)

UA in cache signatures.

If you desire to still forward cacheable requestôs UA to origin server, you can set forward_ua flag at

website level of the configuration file.

Adding Accept-Language request header to signature of cacheable
responses.

By default, aiCache uses hostname and URL of request, possibly modified by removing some parameters

or discarding the complete query string, and a "p0","p1","g0","g1" , as a signature of (pointer to) cached

responses. However, some sites might need to serve different cacheable content in response to requests for

same URLs, depending on a value of a Accept-Language HTTP header present in the request. Accept-

Language HTTP header identifies browser's preference for language/locale in which it would prefer to see the

response.

Most multi-lingual sites have different sub-domains or URL naming schemes to serve their content in

different languages. For example, www.acme.com might have www-fre.acme.com, www-spa.acme.com sub-

domains to serve its content in French and Spanish languages. Or, it might have URL naming convention where

all of the French content lives under www.acme.com/french/ URL. If that is how your site is setup, you don't

need to use the feature we're about to describe.

Yet some sites might use browsers Accept-Language header as an indication of user's preference for

language. So when Accept-Language header is set to: "us-en,en" , the site is served in English, "ca-fre;fre" is

served in French and so on - while preserving the same URL scheme. In other words, English speakers will see

index.html come back in English, while French speakers will see the same URL come back in French. Clearly,

if we were to cache such responses, we must be able to discriminate them based on value of Accept-Language

header. In other words, "index.html" response in English should be different from the same "index.html"

response in French. aiCache accomplished that by allowing you to add the value of Accept-Language header to

the signatures of cached responses.

You set it up by specifying sig_language in website or pattern section of the configuration file. The setting

is a flag and doesn't require any parameters. With this setting in effect, you can observe, via CLI inventory

commands, that the response signatures, in fact, have the value of Accept-Language header embedded in them.

Please note that depending on the user's browser and their locale settings, there might be some variation in

the values of Accept-Language header, leading to multiplication of cached responses and reduction of cache hit

ratios, so use this setting only when necessary.

aiCache V 6.291

 User Guide
www.aiCache.com

129

Get your life backÊ
É 2001-2013 aiCache, Inc .

Adding value of arbitrary request header to signature of cacheable
responses.

You can configure aiCache to add a value of an arbitrary request header to the cache signature. To

configure, set sig_header at website or pattern level. The setting requires a single value: the name of the header

whose value you wish to use in the signature. For example:

sig_header custom - header

As usual, patternôs sig_header value, when set, overrides that of website. With this setting in effect, you

can observe, via CLI inventory commands, that the response signatures, in fact, have the value of specified

header embedded in them. Only one such value is allowed ï when multiple are set, only the last value takes

effect.

When detected in inbound request, aiCache forwards this header and its value to the origin servers, when

refreshing or obtaining first fill for cacheable requests.

As you may have noticed, there appears some overlap between this signature setting and sig_ua and

sig_language . But use of the sig_header allows additional signature component, even when sig_ua and/or

sig_language are set.

Response-driven Cache Invalidation. [cluster/peer enabled]

This feature is best explained by example. Letôs say you have a message board web site where you cache

both discussion threads and forum fronts. Yet at the same time, when a new message is added to a thread, you

want to have aiCache expire the cached content of respective discussion thread right-away, not waiting for

cached content to expire when its TTL runs out. This way the newly added message is seen by visitors as soon

as possible and the posters are not confused when the message they've just posted doesnôt show up in the thread

right away, as they certainly expect it to.

aiCache once again comes to the rescue by allowing you have your cake and eat it too. All you have to do

is to send a header called X-expireURL in the response to a post, identifying a URL pattern for aiCache to

expire. For example, assuming an on-line forum that uses a popular forum software:

X- expireURL : /acme - bb/ forumdisplay.php?f= 123

would expire particular forum page, while

X- expireURL : /acme - bb/ showthread.php?t= 123456

would expire a particular thread page . You can send multiple headers with that name to expire multiple

cached responses. Resorting back to the message board example, you might want to expire both the sub-forum

page and particular thread ï it is up to you.

aiCache V 6.291

 User Guide
www.aiCache.com

130

Get your life backÊ
É 2001-2013 aiCache, Inc .

Do not specify host name or "http://" prefix in X-expireURL header, follow the format in the example

above.

Java, PHP et al, all have APIs to easily insert such headers into responses. However, in case of Java you

might discover that you cannot have multiple header values with the same name (in case you want to expire

more than one URL pattern). In this case a little cheating gets the job done: call these headers X-expir1URL,

X-expir2URL and so on - replacing the "e" after "r" with a number.

Please note that the provided value (the string after X-expireURL :) is treated as a pattern. If you need to

make sure you only expire a single response, please terminate the pattern with a \s (space) - which is always

present after the URL, before the "p1", "g1", "p0" and "g0" portion of the signature. In general, being able to

specify an expiration pattern, as opposed to exact URL, allows you to expire content with more ease - for

example you can expire all of the pages (in a case of paginated URL) with a single pattern.

If you have any peers defined, aiCache communicates with each of them, resending the same expire

pattern command(s). This way if you have more than one aiCache server accelerating this web site, all of them

expire this content simultaneously. For more information please see this section.

You can disable response-driven content expiration at website or pattern level by specifying

ignore_resp_expire setting at website or pattern level respectively. When this flag is set, aiCache ignores the

X-expireURL header in responses.

Session-driven content caching. [cluster/peer enabled]

Again we provide an example to best explain applicability and purpose of this feature. Letôs say you have a

news website - www.acmetimes.com. The site requires users to register and sign-in to view its content. The

users that are not logged in can only view the home page.

aiCache allows you to cache such site's content in a fashion that enforces the registration/login policy as

described above: the logged in users will be able to see content from cache, while those users that are not

logged in, will not be allowed to view cached content and instead, will be subject to your site's handling of such

users (normally it means the users are asked to register and sign in to view the content - but again, exact

mechanism is completely up to you, aiCache simply forwards requests to origin servers).

Here's how to configure such caching. First, you need to find out what cookie is set when users are

successfully logged in. For example, the cookie could be named sessionid or jsessionid. You also need to know

what URL(s) set these cookies. Normally, it would be the URL that lets users to login in. Let's assume the URL

is login.php.

To identify the session cookie that is used, set session_cookie website-level setting:

session_cookie j sessionid

Your setup might be such that session cookie could be present in either requestôs Cookie header or

embedded into the requestôs URL. To tell aiCache to attempt obtaining the session cookie value from the URLs,

you can set website-level flag setting session_cookie_url. When set, aiCache still tries to obtain the cookie

aiCache V 6.291

 User Guide
www.aiCache.com

131

Get your life backÊ
É 2001-2013 aiCache, Inc .

value from requestôs Cookie header and only when it is unsuccessful, an attempt is made to obtain it from the

requestôs URL.

To specify URLs that are allowed to set session cookies, set sets_session_cookie pattern-level flag in a

matching pattern. For example:

pattern /login.php exact 0

request_type both

sets_session_cookie

Likewise, you may specify URLs that expire session cookies, by setting expires_session_cookie pattern-

level flag in a matching pattern. This way, when one of such URLs are visited, aiCache will forcefully expire

the session cookie by modifying origin server response. A dummy valued session cookie is inserted, set to

expire well in the past. For example:

pattern / logout.php exact 0

request_type both

expires _session_cookie

Next, you need to define set of patterns, allowing caching for site's content - but specifying that in order for

content to be cached and served by aiCache, a valid session cookie is present. To accomplish this, setup the

patterns in usual fashion, while providing session_cookie_required pattern-level flag.

For example, if you site's content, that requires users to be logged in, has a prefix of /content/ you can

configure the following:

pattern / paid content/ simple 1m

session_cookie_required

You're specifying that any URL that matches /paidcontent/ is cached for 1 minute, but is to be served to

users only when their requests carry a valid session cookie. If no valid session cookie is detected in requests,

aiCache simply forwards such requests to origin servers, verbatim, where regular processing takes place. Such

processing normally prompts users to register with the site etc, in order to view the content they are interested

in.

Alternatively, you can allow caching in both cases:

¶ When request carries a valid session cookie (i.e for logged-in users)

¶ When request doesnôt have a session cookie (i.e for anonymous users)

by specifying cache_anonymous at the respective pattern level like so:

pattern / paid content/ simple 1m

session_cookie_required

aiCache V 6.291

 User Guide
www.aiCache.com

132

Get your life backÊ
É 2001-2013 aiCache, Inc .

cache_anonymous

With such configuration in effect, aiCache will store 2 different versions of cached responses for the same

URL ï one for for logged-in users and the other one for anonymous users. To make sure the cached responses

donôt collide, signature of the former is modified to include trailing ñSò character. You can observe such

signatures via CLI inventory commands.

aiCache actively monitors responses that match URL marked as sets_session_cookie. When a session

cookie (Set-Cookie) header is detected in such matching response, aiCache memorizes, in its RAM, that session

cookie's value. It also communicates it to all of its peers, so that all aiCache servers in the same cluster are made

aware of the new session cookie.

Now, for requests to URLs that match patterns with session_cookie_required flag, aiCache checks to see

if a valid session cookie is present. If and when it is present, aiCache allows caching of responses to take place,

following regular "cacheable request" logic.

If a valid session cookie is not present, the request's TTL is set to 0 - resulting in aiCache bypassing the

cache and sending the request directly to an origin server. In other word, the regular "non-cacheable request"

logic takes place. Code on origin servers can then prompt users to login or register to gain access to the

protected content.

aiCache reports number of entries in its session tracking table via Web, CLI and SNMP interfaces.

Periodically, special cleaner logic is executed, removing expired or inactive session entries. Session is

considered to be inactive when there were no references to it within 1 hour. aiCache reports the number of

sessions that were removed from session table during previous cleaner run via CLI and SNMP interfaces. Each

aiCache server in a cluster expires its session cookies independently.

To configure session duration, set session_duration global setting to desired session duration in seconds. It

defaults to 3600 seconds (1 hour).

Since session state is tracked in via RAM structures and is not persisted to more permanent storage,

aiCache loses the session information when cold-restarted. Consider using on-the-fly reloads instead ï see

elsewhere in this Guide for more information.

aiCache can also be configured to always forward client requests to the same origin server that originally

set the session cookie, by setting session_cookie_persist website-level setting. It is a flag, requires no value and

is turned off by default. You'd normally use this setting when your origin servers don't have session state

replication mechanism in place and you want to pin the client to the same origin server that has created and is

maintaining the server-side client state information.

Please note that since we are caching the responses with session cookie set, the responses must be

cacheable. Specifically, they should not be tailored/personalized for particular logged in user. Instead, any such

personalization should be moved to client-side Javascript logic, as described in Appendix to this manual.

As an extreme case, you can opt to cache content at per-user level - by using sig_cookie setting. Set it to

the same value as session_cookie .

aiCache V 6.291

 User Guide
www.aiCache.com

133

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache's support for session cookie is robust and vigorous - it actively monitors session cookie values as

returned by particular URLs on origin servers and matches all inbound cookie value to the ones that were served

by origin servers.

If your requirements are more relaxed - to where you just want to make sure a cookie with a certain name is

present in a request, no matter the value, for the request to be declared cacheable, you can use cache_cookie

setting instead.

aiCache V 6.291

 User Guide
www.aiCache.com

134

Get your life backÊ
É 2001-2013 aiCache, Inc .

Handling and storing of compressed (gzipped) and plain responses.

Plain (non-compressed) and gzip'd (compressed) cacheable same-URL responses are stored as separate

entities. In other words, each is a considered to be a separate cached response, with its own refresh and

expiration time. For example a gzipped response to a home page request could be obtained at a different time

than a plain response for the same URL. Both do, however, share the same TTL.

Additionally, HTTP/1.1 and HTTP/1.0 are also stored separately - see dedicated section on treatment of

HTTP/1.0 requests for more information.

aiCache obtains both in a "lazy", on-demand fashion, separately from each other. When a request for a

gzip'd version comes in, it is forwarded to an origin server, a response is obtained and cached. No attempt is

made to uncompress the gzip'd version, just in case a plain version is needed soon. Instead, when a plain version

is requested, a new request is made to the origin servers and returned plain response is cached separately from

the gzipp'd version of the response that was obtained previously.

Sometimes you might see responses for the same URL stored in both plain and gzip'd format. Such

situation is normally indicative of scripted, non-browser requests being received for such URLs. Some AJAX

application might also prefer to receive non-compressed responses.

You can see what responses, plain and compressed, you have in the cache by using inventory CLI

commands - see CLI section for more information. The cached responses would have "p1" or "g1" added

following the URL, to indicate plain or compressed HTTP/1.1 responses, respectively. Replace "1" with "0" for

signatures of HTTP/1.0 responses.

You can disable compression at pattern level by specifying disable_gzip setting (it is a flag, no value

required). aiCache will not request responses in compressed form and will not compress responses on-the-fly.

On-the-fly Response Compression.

aiCache has ability to compress Web content on-the-fly. While it was rare to have this capability in a web

server 8-9 years ago, nowadays most web servers support it out of the box. So it is up you to decide where you

want to compress the responses ï right on the origin servers or by aiCache. If you feel that origin servers are

already taxed out and could use a break, let aiCache handle it. Otherwise we recommend compressing it at

origin server ï this way aiCache can cache (fit) more responses in the same amount of RAM, due to much

aiCache V 6.291

 User Guide
www.aiCache.com

135

Get your life backÊ
É 2001-2013 aiCache, Inc .

smaller response size
10

. Also, with responses coming compressed from origin servers, aiCache won't have to

spend CPU cycles compressing responses on the fly.

If you decide to let aiCache do the compression, you do not have to modify you origin of web servers in

any way or install any software. Any web server can have its content compressed, as aiCache is not a web server

plug-in.

In order to enable on-the-fly compression in aiCache, you have to set min_gzip_size for a website where

you want to enable this feature:

min_gzip_size 2000

and aiCache will then compress-on-the-fly responses that have Content-Length (response size minus the

header size) of 2000 bytes and more and have Content-Type: of text/html , text/css and appliction/x-

javascript. No other content types are compressed by default. Compression of HTML, CSS and Javascript

responses is known to work across all of the browser types without any issues. Compressing smaller responses

(less than 2000 bytes in size) is likely to be counterproductive, as it increases load on the aiCache server without

providing any significant reduction in size of responses.

You can also configure aiCache to compress Json and XML responses. Compression of these response

types is disabled by default and can be enabled by providing compress_json and compress_xml directives in

website or global sections of the configuration file. After enabling compression, please test carefully, as

compressing these response types can cause problems with some browsers.

The responses are only compressed when triggering request indicates support for gzip compression via

Accept-Encoding: gzip request header.

Please note that on-the-fly compression happens within worker thread, as opposed to getting delegated to

another thread. aiCache uses special logic to assure fairness to all connected clients: if a large response body

needs to be compressed, aiCache will compress a portion of it, process data for other outstanding clients, return

back and compress some more and so on. This way a large response, requiring compression, doesn't unfairly

stall other clients.

You can disable compression at pattern level by specifying disable_gzip setting (it is a flag, no value

required). aiCache will not request responses in compressed form and will not compress responses on-the-fly.

Compression and IE6 (Internet Explorer v6).

aiCache never compresses JS, CSS, JSON or XML responses when replying to requests from IE 6 and IE 5

browsers, as there are known issues with how these browser types handle compressed responses of certain

types. Only HTML responses are compressed for these browser types.

10
 Significantly large text-based responses, such as HTML, CSS, JS, JSON, XML might compress 5:1 and better, a very

significant benefit indeed. Your BW utilization drops, you save money and the end-users, on slower connections, will see responses

coming much faster. And the whole Internet, too, is a better place for it. So please do compress your content !

aiCache V 6.291

 User Guide
www.aiCache.com

136

Get your life backÊ
É 2001-2013 aiCache, Inc .

Here's how this logic works. Upon obtaining the request, if URL contains .css, .js or .xml and browser

type is IE 6 or IE 5, compression is disabled and everything is safe. If that's how your website is setup, you don't

have anything to worry about, aiCache has you covered and you can skip the rest of this sub-section.

However, sometimes the response content type cannot be easily deduced from the URL and is not known

till the actual response is obtained. For example, a request for URL /node/12345 can return a CSS or JS

response, although there is nothing in the URL indicating possibility of such outcome.

Upon obtaining the response, aiCache will be execute IE6 safeguard logic again and if response content

type is anything but HTML and the requesting browser is IE 6 or IE5, compression is disabled as well.

You can opt to turn off all and any compression for IE 6 and IE 5 browsers by setting disable_gzip_ie56

global option. The setting is a flag and requires no value.

When you know that a particular pattern is safe for IE5 and IE6 compression, you can set

enable_gzip_ie56 setting at pattern level. The setting is a flag and requires no value. You will obtain most

reliable setup by setting disable_gzip_ie56 global option and then qualifying particular patterns as safe for IE5

and IE6 compression by using enable_gzip_ie56 setting at pattern level. It does require a bit of work, but

might offer significant benefits in case of large HTML responses - these are best when sent in compressed form

(both getting to the clients faster and lowering your bandwidth bills).

As a result of aiCache IE6 safety logic, you might see (via CLI inventory commands) cached responses

whose signature includes "ie56" component and be interested as to where this signature component has come

from. Don't be alarmed, this is expected behavior.

Tell-tale signs of IE6-related content-compression problems are IE6 users reporting seeing gibberish in

their browser windows , seeing content download popup windows when simply browsing an affected site,

content formatting issues (due to corrupt CSS) or Javascript errors (due to corrupt JS).

There shall a worldwide celebration when last of IE6 browsers leaves this planet, but for now,

unfortunately we still must support these outdated and quirky browser types. aiCache is there, to assist you in

this less than pleasant endeavor.

You can disable compression at pattern level by specifying disable_gzip setting (it is a flag, no value

required). aiCache will not request responses in compressed form and will not compress responses on-the-fly.

aiCache V 6.291

 User Guide
www.aiCache.com

137

Get your life backÊ
É 2001-2013 aiCache, Inc .

Forwarding cache control headers as received from origin servers.

Normally, aiCache overrides and overwrites all and any HTTP cache control headers, as received from

origin servers, with its own. Some of such headers are "Cache-Control", "Pragma", "Expires". If you desire to

instead have aiCache not do that and forward these headers verbatim, as received from origin servers, please

use forward_os_cache_headers setting, at website level. For example:

website

hostname news.acme.com

forward_os_cache_headers

....

Handling of certain response headers with body-less responses.

When a response, as received from origin server, has no body, aiCache strips both Content-Type and

Content-Encoding headers from such responses, if any are present, before responses are sent to client. This is

done to avoid confusing certain clients that might expect a response body upon seeing such headers.

Additionally, not sending these headers under such conditions also saves precious bandwidth.

Normally, when a body-less response is to be delivered to clients, aiCache doesn't insert Content-Length:

0 header, as responses without such header are assumed to be body-less by most clients. Alternatively, you can

configure aiCache to explicitly insert Content-Length: 0 header into body-less responses by specifying

send_0_cl flag (requires no value) at website level.

Handling of POST requests with Expect header.

You might see POST requests that carry "Expect: 100-continue" header. Such header normally is used by

client to see if a server is willing to accept a large POST body. Only upon seeing "HTTP/1.1 100 Continue"

response will client continue with the request and send the actual POST body.

Upon seeing such "Expect: 100-continue" header, aiCache will respond back with "HTTP/1.1 100

Continue" response. It will then collect complete response and forward it to an origin server. aiCache doesn't

not forward the "Expect: 100-continue" header to origin servers, freeing them from having to deal with this

extra logic.

aiCache also logs and reports the number of requests with "Expect" header, at both global and website

levels, via CLI, Web and SNMP reporting.

aiCache V 6.291

 User Guide
www.aiCache.com

138

Get your life backÊ
É 2001-2013 aiCache, Inc .

De-chunking of request and response bodies.

In order to safeguard origin servers from bogus/malformed requests, aiCache will always de-chunk request

bodies, when Transfer-Encoding: Chunked is specified in incoming requests. Only when request body can be

properly de-chunked, request is processed. Should request require a trip to an origin server, aiCache will

forward de-chunked request body, sparing de-chunking cycles on origin servers.

Likewise, aiCache always de-chunks chunked response bodies - verifying their validity before forwarding

the responses to clients. It is the de-chunked response bodies that get sent back to clients.

Cache size management via cache cleaner process.

As aiCache stores all cached responses in server RAM, it is important to optimize the RAM usage so that

more responses can be stored and overall memory management overhead could be reduced. We will now

describe the techniques used by aiCache to accomplish this goal.

Cache size management via cache cleaner process.

In order to keep size of response cache under control, aiCache implements cache cleaner logic of 2

different types: soft cache cleaner and hard cache cleaner. Both run periodically looking for cached responses

that have not been accessed in a while. These documents are typically ones that were requested at some point a

while back but were not requested since then again. Remember that aiCache uses on-demand cache refreshing

algorithm and does not try to refresh a stale cached document unless a new request comes in for this particular

document.

Soft cleaner removes response data but it preserves an entry in the response cache - so later on, you can

still see those response cache entries and associated statistics.

Hard cleaner removes response data and the corresponding entry in the response cache - so all and any

statistics about such responses is lost. Compared to soft cleaning out of cached response, hard cleaner frees up a

bit more memory.

Cleaning out such "unwanted" cached responses releases memory and allows for caching of more content.

It is only beneficial for the sites with lots and lots of cacheable content. While it can lower aiCacheôs memory

footprint, properly sizing the amount of RAM in your aiCache server is still the best way to go. To reiterate the

state-of-the-art in that area: as of 2007-2008 you can have up to 64GB of RAM in better servers and that

number has grown all the way to 256GB in 2009. Sometimes, as they say, thereôs no replacement for

displacement - so do size up the RAM in your servers properly to allow for most optimal caching of content !

To adjust the periodicity of soft cleaner runs set cache_cleaner_interval to desired interval, in seconds.

aiCache uses a reasonable default, so you don't have to set it. Experiment with different settings if you detect

memory overutilization .

aiCache V 6.291

 User Guide
www.aiCache.com

139

Get your life backÊ
É 2001-2013 aiCache, Inc .

To adjust the periodicity of hard cleaner runs set hard_cache_cleaner_interval to desired interval, in

seconds. By default, hard cleaner is set to run once per hour. To disable hard cleaner, set this setting to 0.

Normally, CC cleans out cached responses irrespectively of whether or not the cached responses are still

fresh. If you want to disable cleaning out of cached fresh responses , set cc_obey_ttl flag at website level.

By default, CC cleans out responses that have not been accessed in cache_cleaner_interval seconds. You

can change that by setting cc_inactivity_interval setting at website level. The cache cleaner continues to run

every cache_cleaner_interval seconds.

Occasionally you might want to disable cache cleaner altogether, for a given website. Do accomplish that,

set cc_disable setting at website level.

Here's how to decide between cache cleaner types: you'd always want to enable soft cleaner. Depending on

how active your site is, reasonable settings for cache_cleaner_interval might vary from 1m (60) for incredibly

busy sites with wide range of cacheable URLs to may be 1hr (3600) and above if the URL set is more confined.

You don't have to use hard cleaner unless your URL set is stressing your memory footprint. Otherwise, if

you have a large number of cacheable "one-timer" URLs - that get cached but are rarely accessed again and the

cache size keep growing, putting a stress on the system, you can enable hard cache cleaner.

Cache size management via Cache-by-Path Feature.

Let's say your web site is fairly large and has significant number of various cacheable URLs. After

deploying aiCache, most of the content from your web servers will end up in the aiCache's response cache as

users request it from your web site. aiCache is designed to keep such cacheable responses in memory (RAM)

and never tries
11

 to save cached documents to secondary storage, such as hard drives.

aiCache uses requestôs URL as a pointer to (a signature/key of) cached copy of the Web content. Typically

we would want to use as much information as possible in the URL to act as such ñsignatureò or pointer to this

cached object. For example let's assume that our web site has just published a breaking news article and it is

available under the following URL: www.acmenews.com/stories.dll?articleid=12344.

In order to cache this document we would need to refer to it by the whole URL string, as shown above.

Assuming that we have about a thousand active stories on our Web Site, we would end up with about a

thousand cached Web documents, all with unique signatures of

www.acmenews.com/stories.dll?articleid=NNNNN, representing these news articles, which is absolutely

fine and is just the way the aiCache was designed to operate.

11
 It might happen on a resource-starved system when OS forcefully pages out an application (aiCache in our case) to secondary

storage to free RAM space for another application. Swapping is to be avoided at all cost - not just for aiCache but any other

application as well. This, amongst other reasons, is why it is important to have ample RAM available.

http://www.acmenews.com/stories.dll?articleid=12344
http://www.acmenews.com/stories.dll?articleid=12344

aiCache V 6.291

 User Guide
www.aiCache.com

140

Get your life backÊ
É 2001-2013 aiCache, Inc .

Now, let's consider different example. In today's world of Internet it is quite common for one web site to

provide a link to content on a different site. Let's assume that a number of external web sites point to our web

siteôs homepage. In order for us to know which of those Web Sites has referred a user to our Web Site, those

referring sites would normally provide a ñreferrer IDò of some form.

For example, the web site ñwww.acmebusinesspartner.comò might point (via HTTP href) to

ñwww.acmenews.com/breakingnews.htmlò via the following link:

ñwww.acmenews.com/breakingnews.html?partnerid =partner1ò

The ñpartneridò parameter does not affect appearance (content) of the resulting Web page in way. It is

provided simply to end-up in the log file or to be analyzed by client-side Javascript code, so that at the end of

day we know how many users were referred to our web site by our partner sites.
12

Normally, we would use the whole string above,

 www.acmenews.com/breakingnews.html?partnerid=partner1

as a signature for the cached copy of breakingnews.html. Letôs assume that there are hundreds of sites out

there that point to our Web Site. This would lead to hundreds of different URLs pointing to the same document

and would force us to populate cache of our aiCache server with hundreds of copies of the same Web response,

polluting the cache unnecessarily with exact bit-for-bit copies of the same content ï clearly rather wasteful

situation in respect to utilization of RAM.

The example might get even more extreme in certain other cases. For example, some web sites append

random strings of characters as a parameter to static web pages or JavaScript files, as a way to obtain certain

functionality
13

. However this parameter does not have any impact on the web document itself and is essentially

ignored by the web server(s). Once again, if we use the complete URL string as a signature for the cached copy

of the web documents, we would pollute response cache with possibly thousands of copies of the same response

and adversely affect performance.

Imagine a web site with a hundred thousand subscribers that appends subscriber ID as a parameter to a

static HTML or JavaSript file.
14

 If we follow our regular routine and store each resulting Web document as a

separate entry in the aiCacheôs cache (even though all of these have absolutely identical content), we might

simply run out of RAM space on our servers. Let alone that caching responses under signatures containing such

a random string would effectively make such responses non-cacheable.

12
 This information can be used to reward our partners for driving visitors to our site or for other purposes that are outside the

scope of this guide.

13
 Colorfully named ñcache-bustingò is one such functionality. Another one is to append parameters to JavaScript and/or HTML

files for ñclient-sideò processing, to be used by JavaScript.

14
 So that it becomes available in JavaScript, for example.

http://www.acmebusinesspartner.com/
http://www.acmenews.com/breakingnews.html

aiCache V 6.291

 User Guide
www.aiCache.com

141

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache addresses this problem of cached content explosion with a feature that allows designating certain

URLs as cacheable ñby-path-onlyò. In other words these URLs will have their entire query part stripped to

obtain signature that point to resulting (cached) Web document. For example

www.acmenews.com/breakingnews.html?partnerid=partner1

 becomes www.acmenews.com/breakingnews.html which then would be used as signature for the cached

copy of this page. No matter how many sites refer to us in this fashion, we only store a single copy of this web

document in our cache. We save significant amount of RAM space, yet we retain the required functionality, as

the referrer information still can be processed client-side and ends up in the aiCache log files should server-side

log crunching be required.

Resulting resource preservation can be quite significant. Just as explained above we might be able to cut

the number of objects we have to store (and manage too) in aiCacheôs cache by many orders of magnitude.

Configure this functionality by specifying ignore_query for particular pattern:

pattern html simple 10m ignore_query

Ignoring the URL's query string only affects the cached response's signature and has no effect on anything

else. Specifically, when a response needs to be obtained, the whole, complete original URL, as received from

the requesting browser - including query string, is sent to origin servers.

Cache size management via query parameter busting.

Similar to the feature described above, you can also keep some of the parameters in the query portion of the

URL, while removing others. Such modification only affect the cached response's signature and have no effect

on anything else. Specifically, when a response needs to be obtained, the whole, complete URL - including

query string - with all of the parameters, as received from user browser , is sent to origin servers.

Again, we remove parameters from query string to optimize performance and reduce waste that would

occur otherwise. Let's consider this URL:

www.acmenews.com/showstory.asp?storyid=1234&partnerid=partner1

We must use query string in addition to the URL path to be able to cache proper responses - so we can not

use the cache-by-path feature, as it ignores the query string entirely. Yet once again we have a parameter added

to the query string that doesn't affect the response.

aiCache to the rescue ! We can ignore the partnerid parameter, while keeping the storyid in the signature.

To accomplish that, create a pattern that matches this url (something like showstory.asp might be all you need)

and specify:

ignoreparam par t nerid

in the parameter section. Now incoming request for:

http://www.acmenews.com/breakingnews.html

aiCache V 6.291

 User Guide
www.aiCache.com

142

Get your life backÊ
É 2001-2013 aiCache, Inc .

www.acmenews.com/showstory.asp?storyid=1234&partnerid=partner1

has its signature transformed to

www.acmenews.com/showstory.asp?storyid=1234

and that is what is used as cached response's signature. The complete original request string is still

forwarded to the origin servers when we need to perform a first fill or a refresh, so it doesn't break any logic on

origin servers - as that logic most likely cares about each and every parameter in the request string, even those

we might want to discard from the signature.

You can ignore one parameter, a few or all of them, although ignoring all of them is best accomplished via

cache-by-path feature.

Quite frequently web sites use a technique called "cache-busting" . It mostly boils down to adding a

parameter whose value is a random string. It is aimed at making sure no HTTP caches between a visitor and the

target web site can cache content. When such cache-busting parameters are used in URLs of cacheable

responses, youôre advised to configure aiCache it to remove such cache-busting parameter from URL signature.

Figure out what the cache busting parameter name is and add it as ignoreparam setting under the proper URL

patterns.

Normally, aiCache uses exact matching when matching parameters to ignoreparam. However you can

configure it to do partial matching via param_partial_match setting under matching pattern. It has potential to

speed up lookup and removal of ignoreparams. You can also use this technique to remove parameters that

have semi-random names, but with a common sub-string to them. For example, to get rid of bustXXX, bustYYY

and other parameters that contain "bust" in them, you can specify one ignoreparam "bust" and set

param_partial_match under the matching pattern.

Cache size management via ignore case feature.

Normally cached response signatures are case sensitive. So when you cache responses to 2 requests:

acmenews.com/search.jsp?query=Vacation and

acmenews.com/search.jsp?query=vacation

the responses are stored as 2 different responses, even though the actual response bodies are most likely

identical. If that's the case, you can tell aiCache to ignore case, website-wide or per pattern, via ignore_case

setting When configured so, aiCache stores only one response for both of these requests. To accomplish that,

aiCache converts signatures to lower case - you can see that by executing CLI inventory command.

If you cache search results, you most likely would benefit from enabling this feature. Another example

might include caching responses to financial stock quote requests - as users might enter a stock symbol in

upper or lower case. With responses to both inputs being the same, you'd want to employ this feature to reduce

memory utilization.

aiCache V 6.291

 User Guide
www.aiCache.com

143

Get your life backÊ
É 2001-2013 aiCache, Inc .

Caching of responses to POST requests.

aiCache allows to cache POST requests just the same way as GETs, although you must be extra careful not

to allow caching of private information.

When caching GET requests, the response's signature is formed from original request's path and query

strings. However, with POST requests, query string might not be present in request's header. For some POST

requests it is instead embedded into the body of request - such requests have POST bodies that are URL-

encoded (have Content-Type: application/x-www-form-urlencoded header specified) . Other POST requests

might have portion of the query in the URL and some of it in the body, XML-formatted bodies, plain text

bodies, serialized Java POJO bodies and so on .

As cached response signatures are used as pointers into cache repository, generating such pointers takes

more time as signatures grow larger. As POST bodies can grow very large, aiCache imposes a limit to the max

body size that can be used as a signature. The limit is configurable via max_post_sig_size global parameter and

is set by default to 256 bytes.

You would not encounter any problems as long as POST body simply contains a few URL-Encoded

variables. But if you're trying to cache responses to SOAP requests and things of that nature, you might want to

enforce the size limit as explained above. And of course you need to make sure that whatever part of the POST's

body is used for cache signature, is large enough to make sure that such signatures are unique for different

requests.

 For a POST request to be cacheable, the following criteria must be satisfied:

¶ Request's URL must match a pattern that has request_type set to post or both

¶ The matching pattern's TTL must be non-zero

¶ The POST's body, if any, must be under max_post_sig_size limit

¶ Cache-busting Cookie, if any are configured, must not be present in the request

¶ Authorization header must be absent

Similar to handling of cacheable GET requests, cacheable URL-encoded POST requests can have one or

more of their parameters removed from their cache signature via ignore_param directive. You'd use such

parameter busting in order to control the size of response cache. See "Cache size management via Cache- By-

Path Feature" and "Cache size management via query parameter busting". You cannot request removal of

parameters from non-URL-encoded POST requests, as there's no parameters to discern.

When response's signature includes CR (carriage return) and/or LF (line feed) characters, you might have

difficulties specifying such signatures at CLI prompt for the purpose of dump command. To diagnose such

responses, aiCache lets you use CLI inventory command - when a single response is matched to the provided

hostname and pattern, it is written out to a file, similar to what dump command does. So effectively you'd rely

on a partial match to locate and write out the cached response of interest.

You can also configure aiCache not to use any of the POST request's body in the signature of the cached

response by specifying a sig_ignore_body setting at website level or under matching pattern.

aiCache V 6.291

 User Guide
www.aiCache.com

144

Get your life backÊ
É 2001-2013 aiCache, Inc .

Here's a technique you should be aware of: even when request's payload is in the request's body, possibly

XML formatted and/or encrypted, you might still be able to get your Dev team to change the code to where they

append a meaningful, human-readable signature for the response right to the URL, as an extra parameter. This

way you can use it a signature for the cached response, w/o having to include potentially very large request

body right into the signature (and you accomplish that via sig_ignore_body directive).

Such extra parameter is most likely to be ignored by the server side code, as it doesn't know and/or look for

it, yet it can be then used by aiCache as a signature of the response, allowing for faster processing and better

troubleshooting capabilities.

aiCache response preload (pre-fetch) feature.

A website might rely on a number of API calls to other websites/service providers for functionality such as

Ad calls, analytics etc. Such calls might be expensive in terms of amount of time they take to execute and as a

result, they might slow down the pages on your website that rely on these calls.

aiCache allows you to configure a set of such slower URLs for preload, where aiCache pre-fetches and

actively maintain a queue of fresh responses to such slower calls, in anticipation that these responses might be

soon requested. When they are requested, instead of going to the remote site to obtain the response, aiCache,

virtually instantaneously, serves pre-fetched response.

By tailoring pre-fetch parameters, you can fine tune preload so that most of such responses are in fact pre-

fetched. To assist with it, aiCache collects and reports a comprehensive set of pre-fetch statistics.

One must not confuse the preload functionality with caching of responses. While caching is only applicable

to shared, cacheable responses, preload logic only acts on non-cacheable responses (we also refer to these as

0TTL throughout this manual).

You may specify one or more of prefetch_url settings in the website section(s) of aiCache configuration

file. This setting requires 2 mandatory parameters: the URL itself, how many of preloaded responses for that

URL you want aiCache to maintain and optional third parameter, indicating whether you want to request the

preload responses in compressed form.

For example:

prefetch_url /slowGetAdCall?page=home&area=top 100 gzip

prefetch_url /slowGetAdCall?page=home&area= bottom 100 gzip

prefetch_url /slowGetAdCall?page=home&area= rightrail 100 gzip

specifies that you want to preload responses to URL of /slowGetAdCall?page=home&area=top, ask

aiCache to maintain a queue of 100 of such responses and you want aiCache try to obtain gzipped responses for

that URL. Total of 3 different preload URLs are specified - each requesting 100 responses to be preloaded.

Every second, aiCache analyzes the queues for all three URL and if any of the 3 queues contain less than

100 responses, aiCache requests more responses to maintain the queues at 100 responses.

aiCache V 6.291

 User Guide
www.aiCache.com

145

Get your life backÊ
É 2001-2013 aiCache, Inc .

When a request comes for any of these URLs, aiCache removes a matching response from appropriate

queue and sends to the requesting browser. Again, the next second aiCache will request a response to top off

the matching queue.

Global, per-Website Web statistics screens contain information on the efficacy of pre-load: ratio of

responses served from preload queues to all 0TTL responses. You'd want that ratio to be as close to 100% as

possible, to maximize the benefits of response preload. To get there, adjust the number of preloaded responses.

If you get that number too high, it is possible that some preloaded responses might get stale before a client

has a chance to request it. To deal with this scenario, you can specify the max age of preloaded responses that is

allowed to be served to the clients, via max_pref_fresh_time parameter in website section, it defaults to 10

minutes.

aiCache reports the queue length statistic for each URL you configured for preload via Web and CLI

interfaces. Preload counters are also available via SNMP. Please note that occasionally you might observe

number of preloaded response exceeding the number you specified in the configuration file. It might happen

when responses are slow to obtain and is a harmless condition.

During request processing, when no preloaded response is available, aiCache requests a response via

regular logic, completely seamlessly to the requesting client. Responses that were served from preload queues

are also indicated as such in the access log files.

You can also specify arbitrary HTTP headers to be added to preload requests via prefetch_http_header.

Each preload URL can have its own set of HTTP headers (more than one such additional header can be

specified for each configured preload URL). Each prefetch_http_header directive takes two required

parameters: header name and header value. Header value follows header name and extends till the end of the

line. For example:

prefetch_url /slowGetAdCall?page=home&area=top 100 gzip

prefetch_http_header User - Agent MyCustomUser Agent V.10

prefetch_http_header X- Cust om- Header Test Value

prefetch_url /slowGetAdCall?page= sports &area=top 100 gzip

prefetch_http_header User - Agent MyCustomUser Agent V.22

prefetch_http_header X- Custom - Header Another Value

And lastly, you can configure aiCache to close origin server connection after obtaining preload responses

via prefetch_conn_close directive. This setting overrides whatever origin server keep alive setting you might

have configured in that it closes the connection used to obtain the preload response - while other OS

connections might be reused after obtained regular, non-preload responses.

aiCache request retry logic.

By default, aiCache tries to obtain a valid response from origin servers up to 3 times - unless a request is a

POST, in which case only one attempt is made. This behavior can be overridden at website or pattern level by

specifying no_retry setting in respective section - in which case only a single attempt is made for all requests.

aiCache V 6.291

 User Guide
www.aiCache.com

146

Get your life backÊ
É 2001-2013 aiCache, Inc .

aiCache can be configured to retry POST requests - by specifying retry_post setting at website or pattern

level. You must understand the consequences of retrying POST requests before enabling this feature. While

desirable in some cases, in others it might lead to doubling (and tripling and so on ...) of purchase orders, credit

card charges, message board postings etc. So please exercise caution with this option.

aiCache enforces time limit on how long an origin server can take to provide a response, it defaults to 10

seconds. You can set it to a different value at pattern, website or global level, in that order of precedence (where

pattern's setting overrides website's which in turn override's global setting), by using max_os_resp_time

setting (in seconds). Do not set it to 1 second as unpredictable behavior might ensue, it must be 2 seconds or

more.

If a response cannot be obtained within this amount of time, aiCache might retry it up to total of 3 attempts

or fail it right away, depending on no_retry setting (see above).

Be aware that you might encounter problems when certain, mostly POST requests are configured for

retries. For example, you might end up resending user-registration request - resulting in error response, as

registration took place after the first request. Good understanding of site's logic is required to prevent things like

these from happening. To be safe, be careful enabling retries for POST requests and increase the

max_os_resp_time setting for the slower requests - giving them more time to complete so that aiCache doesn't

end up generating (premature) retries.

In case of requests, aiCache will use "origin server of last resort" - if any are provided, after exhausting

retries against "regular" origin servers. Such LR OS are identified by assigning os_tag of 100.

Forcing retry (refresh) by response header or response size check.

aiCache can be configured to force retries of cacheable requests against origin servers by returning a

special response header: X-NoCache . You can set it to any value, it is ignored. Another way to indicate a bad

response to aiCache and force retry is to configure minimum and maximum acceptable response size via

retry_min_resp_size and retry_max_resp_size directives in the pattern configuration section.

Here's a quick example where this feature can be useful: if you have intermittent errors originating

randomly from origin servers, where a "normal-looking" 200 response is returned, yet you can determine if the

response is unacceptable and should be retried based on responses size, in hope that you can obtain a good

response on such subsequent retries.

Please note existance of no_retry_min_resp_size and no_retry_max_resp_size - when response size fails

these conditions, no attempts are made to retry the request and the obtained response is fed back to the client,

but is not cached.

Be aware that aiCache will compare whatever is the response size as reported by origin server. So when

response comes back compressed (gzipped), its size might be much smaller, compared to uncompressed version

of same. So you might need to adjust your retry_min_resp_size and retry_max_resp_size settings

accordingly, to deal with compressed responses.

Alternatively, if limitations of API/etc force code on origin servers to return 200-response code, yet you

want to somehow indicate to aiCache that response should be retried and should not be cached (even if

aiCache V 6.291

 User Guide
www.aiCache.com

147

Get your life backÊ
É 2001-2013 aiCache, Inc .

matching pattern is configured otherwise). In this case you can programmatically insert the X-NoCache

response header and aiCache will re-try the request up to 3 times. If it still fails, aiCache sends the obtained

response back to the requesting clients, complete with X-NoCache header - but the response is not cached.

In other words, you can effectively override pattern-specified TTL by returning such response header.

For cacheable responses, should a previously cached stale copy of content be available and fallback setting

being set for matching website, such previous stale cached response is returned in response when X-NoCache

header is specified or response size limits are violated.

Should aiCache be forced to return a response that carried X-NoCache header from an origin server, this

header is forwarded by aiCache in its own response , so that you can use it in client-side logic or other

downstream logic/infrastructure. Expires header is also inserted and set well in the past to indicate to

downstream recipients that the response should not be cached.

Please note that retrying can be turned off by specifying a no_retry setting at website or pattern level.

Alternatively, you can force retry by matching content of the response body against a set of patterns. Please

see chapter titled ñContent-driven request fallback or retry controlò for more information on this feature.

Modification/insertion of HTTP Via header.

Normally, aiCache indicates its presence in the HTTP response path (the fact of aiCache being an

intermediary) by modification or insertion of HTTP Via header. aiCache identifies itself under the name that

you specify via server_name global setting, default value being aicache6.

You can configure aiCache to not indicate its presence via disable_via website-level setting.

Additionally, you can configure aiCache to indicate itôs presence to origin servers, by inserting/modifying

Via header in the requests sent to origin servers, by setting send_os_via website-level setting.

Adding HTTP response headers.

You can configure aiCache to add custom response headers to responses via pattern-level resp_header

parameter. For example:

pattern /blah simple 10

resp_header X - Header Some Header Value

resp_header Another - X- Header A different Header Value

aiCache V 6.291

 User Guide
www.aiCache.com

148

Get your life backÊ
É 2001-2013 aiCache, Inc .

Dealing with malformed 3xx responses from Origin Servers.

Occasionally, you might observe malformed 3xx (such as 302, 301) responses being sent by origin servers,

where a non-zero Content-Length is indicated in the response header, but the actual body is missing. Normally,

such malformed response would time-out in aiCache, as aiCache expects, in vain, to receive the declared

response body which never comes.

The best way to fix this is to properly configure origin servers to not indicate presence of a response body

when there's none. However, in a pinch, you can tell aiCache to not expect 3xx responses to ever have a body

by setting zero_body_300 flag at website level, in the aiCache configuration file.

Likewise, you might find yourself in a situation where origin servers are sending a response body in 302

and 301 responses. Such response bodies are unnecessary, as they are never even seen by users. Additionally,

you in heavy traffic setups, sending such extra bytes to the requesting browsers is wasteful of bandwidth and

other resources. You can configure aiCache to disregard such bodies, if any, by setting zero_body_300 flag at

website level, in the aiCache configuration file.

Diagnosing request and response cookies.

Let us provide a helpful reminder about HTTP requests and responses as they relate to cookie handling.

Responses set cookies via Set-Cookie response headers. Response can carry multiple Set-Cookie headers in

order to set multiple cookies. Cookies can have values and a number of attribute ï such as expiration date,

domain they are applicable to and so on. Hereôs an example snippet of a response header:

Set - Cookie: dLTHID=AD7631B846 DA143B0C92789729E2; Path=/; Domain=. acme.com

Set - Cookie: userid =213452345234 ; Pat h=/; Domain=. acme.com

Set - Cookie: attribute =account=paid ;

As you can see, a total of three different cookies are being set via this response. Notice that in the last Set-

Cookie header only a cookie named attribute is being set, with the value being ñaccount=paidò. In other words,

account is not a name of a cookie - but rather a part of attribute cookieôs value.

While a single Set-Cookie can, in theory, set multiple cookies, you are not likely to see this arrangement in

practice. Instead, each cookie that is being set, will likely be set via a separate Set-Cookie header.

After a cookie is set via a response, client browsers will carry such cookie and its value, when appropriate,

in the request header, via Cookie request header. Continuing with the example above, the request header might

contain the following:

Cookie: dLTHID=AD7631B846 DA143B0C92789729E2

Cookie: userid =213452345234 ; attribute =account=paid

aiCache V 6.291

 User Guide
www.aiCache.com

149

Get your life backÊ
É 2001-2013 aiCache, Inc .

As you can see, all 3 cookies that were set via Set-Cookie response header, are now sent, by the browser,

via requestôs Cookie header. Notice how first Cookie header only specifies a single cookie, while the second

Cookie header carries 2 different cookies via a single Cookie header. Browsers might combine a whole number

of different cookies in a single Cookie header and it is a fairly common occurrence.

In order to assist you in diagnosing of both request and response cookies, you can set global level flags of

debug_request_cookie, debug_response_cookie or debug_cookie . When so configured, aiCache will log out,

to the error log file, names and value of both request and response cookies, as they are being processed.

For example, when you specify a 0ttl_cookie , aiCache will analyze if an incoming request contains such

cookie, and you will see appropriate diagnostics output. Ditto for sig_cookie, sets_session_cookie etc.

aiCache V 6.291

 User Guide
www.aiCache.com

150

Get your life backÊ
É 2001-2013 aiCache, Inc .

Diagnosing bad responses.

aiCache logs, in a throttled fashion, information on failed responses. There could be a multitude of reasons

as to why a response could not obtained. aiCache assigns numeric codes to help you diagnose just what went

wrong. The code is written out in entries in both error and access log files.

Error Code Explanation

1 Generic connection error - ai could not connect to selected origin servers, an unexpected

connection close or reset has occured.

2 Timed out waiting for response - origin server did not serve response back in allotted amount

of time.

3 No origin servers were available (for example, all OS have failed the health check)

4 Response size was below min or above max allowed resp size (when either limit is

configured)

5 Response was marked as chunked, but de-chunking has failed.

6 A non-200 or non-301 status response was received for a cacheable request and retry_non200

flag is set

7 X-nocache header has been received in response. Such header is an indication of a bad

response

aiCache doesn't write more than 120 entries per minute, to error log file, to prevent a run-away

consumption of disk space.

Disallowing downstream caching of responses.

aiCache can be configured to disallow downstream caching of responses while still caching them at

aiCache itself. Reasons for such configuration might vary, but the main idea behind such caching is to make

sure clients always come back to aiCache to obtain response, possibly a cached response from aiCache's

response cache.

aiCache V 6.291

 User Guide
www.aiCache.com

151

Get your life backÊ
É 2001-2013 aiCache, Inc .

For example, if you deploy response-driven content expiration (see a separate chapter later in this

document) so that posting a new message to a discussion thread expires that thread within aiCache's response

cache, you'd want to make sure that after cached response is expired and refreshed by aiCache, client does not

use a locally cached copy and instead, re-requests it from aiCache again. For such patterns, specify negative

TTL.

For example, to cache response at aiCache for 10 minutes while disallowing downstream caching, set TTL

to -600 (negative 600).

You'd almost never use negative TTLs for common auxiliary content, such as images, JS and CSS files -

these you want to be cached on client side and intermediate proxies (if any), to speed up loading of pages and

reduce load on aiCache servers and your uplink infrastructure (links, routers, firewalls, load balancers etc).

Also, allowing for aggressive downstream caching is likely to have a positive financial effect through

reduction of bandwidth utilization. And it reduces overall load on the Internets, as fewer bytes need to be

shuffled around.

By default, when responding to requests that match patterns with negative TTLs, aiCache sends Expires

header, set well in the past, to disallow any downstream caching of the responses.

In addition, you can configure aiCache to also add "Cache-Control: no-cache" header to such responses,

by setting send_cc_no_cache setting at website level. By default, sending of this header is turned off to reduce

the amount of data that needs to be sent back to the client.

Forwarding Client IP address information to origin servers.

As aiCache front-ends all of client traffic, the origin servers see all requests coming from aiCache's IP

address . aiCache still collects and logs (if so configured) true client IP addresses in the access log file.

However if your setup requires code on origin servers to have programmatic access to true client IP

information, you can configure this on per-website basis by providing a forward_clip (forward Client IP)

setting. Normally, the client IPs are forwarded as X-aiCache-CLIP header, but you can change that by

providing a different header name as part of forward_clip directive. For example this configuration:

hostname www.acmenews.com

forward_clip X - Client - IP

results in aiCache forwarding client IP as X-Client-IP: 1.2.3.4 HTTP header. The value can be now

programmatically accessed by server-side code and acted on.

Please note that by default, aiCache attempts to minimize modification of request headers for performance

reasons, so do not use this setting (it is turned off by default) unless you need it. Depending on your

configuration, your load balancers (if any) might already be configured to forward true client IPs in the headers.

aiCache V 6.291

 User Guide
www.aiCache.com

152

Get your life backÊ
É 2001-2013 aiCache, Inc .

Forwarding Origin Server IP and port number to clients.

As aiCache front-ends all of client traffic, the clients see all responses as coming back from aiCache's IP

address. In case you need to know what origin server was used to obtain a particular response, you can

configure aiCache to forward origin server IP and port number as an HTTP header.

To enable this feature, please set x_os_header global setting to the desired name. For example this

setting:

x_os_header X- aiCache - OS

results in aiCache forwarding origin server IP and port number as X-aiCache-OS response HTTP header,

for example:

X- aiCache - OS: 1.2.3.4:80

The value can be used for diagnostics purposes and/or accessed programmatically by client-side

Javascript code.

Parsing out forwarded Client IP from request header.

In certain network setups, where aiCache receives requests not directly from requesting clients, but through

some intermediary, such a load balancer, a proxy or another aiCache, the IP address that requests come from

might be that of the intermediary, not of the requesting client.

In this scenario aiCache will log in its access log file the IP address of the intermediary, not that of the

client. However, if you want to record the true client IP and can configure your intermediary to forward the true

client IP as an HTTP header (aiCache can certainly be configured to do so as described above), you can tell

aiCache to parse our such forwarded client IP and log it.

To configure aiCache for this processing, you need to specify hdr_clip at global scope of the configuration

file, setting to the name of the HTTP header that carries client IP. For example:

hdr_clip X - Forwarded - For

aiCache will then parse out such forwarded client IP and log it in access log file, as client IP field. When no

such processing is requested or no client IP is available in request header, a dash "-" is logged instead.

Please note that aiCache must have access to true client IP information for DOS countermeasures to work.

When multiple requests come over the same client connection (a Keep-Alive connection), aiCache obtains

the client IP upon first request and reuses that value when logging the other requests it receives over the same

client connection, as client IP is most likely to stay unchanged throughout the lifespan of a single Keep-Alive

client connection.

aiCache V 6.291

 User Guide
www.aiCache.com

153

Get your life backÊ
É 2001-2013 aiCache, Inc .

However, you can force aiCache to re-obtain (re-parse-out) forwarded Client IP for each and every request

by setting refresh_hdr_clip flag at global scope of the configuration file. Examples when you need to have this

setting set is when an intermediary can send requests from multiple clients over the same connection to aiCache

(aiCache itself does that when configured for OS Keep-Alive connection).

Please note you can cheat a bit and use this directive to log an arbitrary request header, in lieu of using it

for its intended purpose, by specifying header's name via hdr_clip - should you have a need to log a request

header.

Forwarding response's TTL value to clients.

To enable this feature, please set x_ttl_header global setting to the desired name. For example this

setting:

x_os_header X- aiCache - TTL

results in aiCache forwarding response's TTL (in seconds) as X-aiCache-TTL response HTTP header, for

example:

X- aiCache - TTL: 600

Value of 0 is returned for non-cacheable responses. The value can be used for diagnostics purposes

and/or accessed programmatically by client-side Javascript code. The TTL values returned via this header are

static, not the countdown type.

The client_linger and os_linger settings.

These have to do with what happens to TCP/IP connections after they are closed by aiCache. When no

SO_LINGER option is set, TCP/IP connection proceeds down regular, fairly lengthy yet orderly route. This is

the way you want to have it , unless you're running an extremely busy server with very high connection rate.

When running such high-connection rate websites, you will discover that at any point in time you might

have thousands upon thousands of connections in TIME_WAIT state. Now such connections do not translate to

any extra load on aiCache, yet should they create a problem for your setup, you can try reducing number of such

connection by turning on client_linger and os_linger options.

With these options set, the TCP/IP connection close takes a shortcut -instead of an orderly termination, a

TCP/IP reset is sent instead and connection is disposed of immediately, without going through TIME_WAIT

state. You must test this before enabling it in production setting. Some client browsers might not appreciate

getting such TCP/IP resets none too much.

However, this should be much safer with origin server connections - as by the time aiCache issues a reset, it

has obtained a complete response from origin servers. In addition, it is not only aiCache that will show reduced

number of connections in TIME_WAIT state, origin servers will also see similar reduction. Yet again, please

test before enabling it in production.

aiCache V 6.291

 User Guide
www.aiCache.com

154

Get your life backÊ
É 2001-2013 aiCache, Inc .

Alternatively and/or in addition , you can explore setting Linux's own TIME_WAIT interval to a lower

value (some heavy traffic sites set these it to as low as 1 sec):

 echo 5 > /proc/sys/net/ipv4/tcp_fin_timeout

Dealing with empty HTTP Host headers.

As aiCache is capable of accelerating multiple websites off a single instance, you can see that not having

Host header provided in the request, leads to a dilemma: just which of many websites accelerated by this

instance of aiCache is the request for ?

When request doesnôt have Host header specified, aiCache can take one of the following actions:

¶ When default_host global level setting is set, its value is assigned to the requestôs Host header

¶ When enforce_host global level setting is not specified in the configuration file or is set to ñonò,

aiCache enforces host header (which is the default setting). As a result a 409 ñwebsite not

recognizedò response is returned to the requesting client, as aiCache cannot match the request with

an empty request hostname to any of the defined websites.

¶ When enforce_host global level setting is set to ñoffò , the hostname of the first defined website is

assigned to the requestôs Host header. Subsequently, the request will be matched to the first defined

website.

Dealing with HTTP Host headers that cannot be matched to defined websites.

By default, aiCache tries to match request's HTTP header value to a configured website. It attempts such

match based on the value of websiteôs hostname, any of its cnames and/or wildcard settings. If no such match

could be obtained, a 409 ñwebsite not recognizedò error response is returned to the requesting client.

If your setup is such that you want to send all of requests to a certain website, no matter the actual value of

request's Host header, you can configure it via ignore_host global setting. In this case, if no match can be

found during regular processing, the request is assumed to be for the first defined website (as configured in the

configuration file). You can accomplish similar effect by defining a wildcard of ñ.ò (period) for website that

you want to make ñdefaultò website.

Note that this is somewhat different from dealing with requests that have no Host header specified at all

(see previous section on how aiCache deals with such requests) in that requestôs host header is not modified.

Rewriting of HTTP/1.0 requests to HTTP/1.1.

You can configure aiCache to rewrite, in situ, HTTP request's "minor" version to 1 - so that HTTP/1.0

requests are forwarded as HTTP/1.1 requests to origin servers. It is done to speed up processing of responses, as

aiCache V 6.291

 User Guide
www.aiCache.com

155

Get your life backÊ
É 2001-2013 aiCache, Inc .

origin servers are more likely not to use connection close as an indication of complete response, in case of

HTTP/1.1 requests. It boils down to sparing an unnecessary system call.

To configure this behavior, you can set keep_http10 setting to off at website level: Be aware that such

overwrite much cause problems so test it thoroughly before putting it into production.

keep_http_10 off

On dealing with HTTP/1.0 clients and/or proxies.

You might still encounter requests from HTTP 1.0 clients or proxies. Such requests might differ from much

more common HTTP 1.1 requests in the following ways:

¶ HTTP Host header might be absent. aiCacheôs handling of such requests is described on previous page.

¶ Size of response body might be indicated via connection close, as opposed to using much more common

way of indicating the same via Content-Length or Transfer-Encoding: Chunked HTTP headers.

¶ Support for compression might be indicated via Accept-Encoding: gzip header, but in reality the client

(such as a Web browser ,corporate or ISP proxy) cannot deal with compressed responses.

¶ Support for connection Keep-Alive might be indicated via Connection: Keep-Alive header, but in

reality the client (such as a Web browser or a corporate or ISP proxy) cannot deal with Keep-Alive

connections.

Use of connection close by Origin Servers.

To assist you with diagnosing of possible issues related to origin servers using connection close or half

close to indicate size of response in lieu of providing the same via Content-Length, a warning is a printed in

error log file every time such request or response is detected. Clearly, as origin servers are likely to be under

your control, you should configure them not to use this technique.

Compression of HTTP/1.0 responses.

By default, aiCache will compress responses to HTTP/1.0 requests, if requesting HTTP/1.0 client (browser

or proxy) indicates support for compression. However in some situations such indication might be misleading.

It might work for some HTTP/1.0 clients, but not others - so when a cacheable response is gzipp'd as a result of

HTTP/1.0 request that indicates support for gzip, and later is fed to a different HTTP/1.0 request, indicating

aiCache V 6.291

 User Guide
www.aiCache.com

156

Get your life backÊ
É 2001-2013 aiCache, Inc .

same support for gzip, it might not work either or both times . You can disable compression of responses to all

and any HTTP1.0 requests by setting enable_http10_gzip to off, in global section of the configuration file.

enable_http10_gzip off

Keep-Alive for HTTP/1.0 connections.

By default, aiCache allows connection Keep-Alive for HTTP/1.0 connections , if requesting HTTP/1.0

client (browser or proxy) indicates support for Keep-Alive. However, such indication might be misleading. It

might work for some HTTP/1.0 clients, but not others. So to be safe, aiCache doesn't allow it.

If you want to override this behavior, you can set enable_http10_keepalive option to off at global level of

configuration file.

enable_http10_keepalive off

Reporting number of HTTP/1.0 requests.

As a helpful hint as to the volume of HTTP/1.0 requests seen by aiCache, it is reported at both global and

website level, via Web, CLI and SNMP interfaces.

Storing different versions of cached responses for HTTP/1.1 and HTTP/1.0
clients.

To accommodate for HTTP/1.1 and HTTP/1.0 clients (Web browsers , corporate and ISP proxies etc),

aiCache might store up to 4 different versions of responses for any given URL:

¶ Compressed responses for HTTP/1.1 clients. Cache signature of such responses includes "g1". Please

note that aiCache always de-chunks chunked responses from origin servers, so that clients don't have to

do it.

¶ Plain (not compressed) responses for HTTP/1.1 clients. Cache signature of such responses includes

"p1". Please note that aiCache always de-chunks chunked responses from origin servers, so that clients

don't have to do it.

¶ Plain (not compressed), responses for HTTP/1.0 clients. Cache signature of such responses includes

"p0". aiCache never solicits chunked response for HTTP/1.0 requests and properly configured origin

servers should never send chunked responses in response to HTTP/1.0 request. Likewise, aiCache

doesn't solicit, by default, compressed responses for HTTP/1.0 requests and properly configured origin

servers should never send compressed responses in response to HTTP/1.0 request that doesn't indicate

support for compression.

aiCache V 6.291

 User Guide
www.aiCache.com

157

Get your life backÊ
É 2001-2013 aiCache, Inc .

¶ Compressed responses for HTTP/1.0 clients - only when enable_http10_gzip global option is specified

(be warned that enabling it has a potential to cause problems!). Cache signature of such responses

includes "g0". aiCache never solicits chunked response for HTTP/1.0 requests and properly configured

origin servers should never send chunked responses in response to HTTP/1.0 request.

Under normal conditions and for most site, you're likely to see mostly "g1" responses in aiCache

and these also are most likely see the bulk of requests.

Please also note that well behaved origin server should never reply with chunked responses to

HTTP1.0 requests.

Should you ever discover origin servers responding incorrectly to HTTP1.0 requests, you can set

aiCache to overwrite HTTP versions to HTTP1.1 by setting:

keep_http10 off

Configuring additional HTTP headers for HTTP/1.1 and HTTP/1.0 requests.

To accommodate for differences in HTTP/1.1 and HTTP/1.0 clients, aiCache allows to configure

additional, trailing HTTP headers to be added to cacheable requests destined to origin servers (as you might

recall we send such requests for first fill and refresh requests).

These headers are configured per website via httpheader (for HTTP/1.1 requests) and httpheader0 (for

HTTP/1.0 requests) directives in website sections of the configuration file. Multiple directive of both types can

be provided, each becoming an additional HTTP header.

These settings are optional and it is up to you to provide these if you want to , for example, affect origin

server responses in a certain way, etc.

Redirecting for 404 and 500+ response codes.

aiCache allows you to redirect to a custom location when 404 (Document Not Found) response is received

from an origin server in response to a client request. The idea is to send users to a more user-friendly page that

your typical "Not Found" default page. To accomplish such redirection, set 404_redirect_location in website

section. For example:

404_redirect_location htt p://acmenews.com/404grace.html

aiCache also allows to redirect to a custom location when 500+ (all kinds of nasty error responses, like

"internal server error") response is received from an origin server in response to a client request or aiCache has

generated such 500+ error response internally (for example, when no origin servers are available). The idea is to

send users to a more user-friendly page that your typical "Internal Server Error" default page. To accomplish

such redirection, set 500_redirect_location in website section. For example:

aiCache V 6.291

 User Guide
www.aiCache.com

158

Get your life backÊ
É 2001-2013 aiCache, Inc .

500_redirect_location http://acmenews.com/ 500grace.html

Both of these redirects are website-wide. If you want to apply more granular control over error-driven

redirection, you can use redirect_4xx and redirect_5xx pattern level settings. For example:

pattern / simple 10

redirect_4xx http://acmenews.com/4xx grace.html

redirect_5xx http://acmenews.com/5xx grace.html

You can use these settings when you want to provide redirects that are specific to the request URL. For

example, you might know that your message board system can sometimes take a while to post a new message.

As a result, such posting requests can occasionally timeout awaiting response from origin server. So you want

to let users know to be patient and not try to repost the message right away, instead come back and check in a

minute or so. So you might craft a special page explaining this and specify:

pattern messagepost.jsp simple 0

request_type both

redirect_5xx http://acmenews.com/bePatientAndDontRepos t .html

aiCache V 6.291

 User Guide
www.aiCache.com

159

Get your life backÊ
É 2001-2013 aiCache, Inc .

Serving/injecting file system content.

As you already know, aiCache allows for very flexible setups - where you can have an accelerated website

that serves some content from certain origin servers (os tagging), while optionally going to a different set of

origin servers for other content . Now you are about to find out that aiCache can also inject file system content

into accelerated sites.

You can configure aiCache to serve files off a local file system for certain request URLs - instead of taking

the regular route of trying to obtain such responses from origin servers. All you need to do is to specify

website-level or pattern-level file_doc_root setting, with pattern-level setting, when set, overriding the website-

level setting (please note that global-level setting of file_doc_root has a very different meaning) . You then set

pattern-level filesystem flag. For example:

website

hostname www.acme.com

file_doc_root /var/www.acme.com

....

pattern /static 30m

filesystem

With this configuration in effect, aiCache will attempt to obtain responses to matching requests by serving

matching files in a local directory of /var/www.acme.com . For example, an incoming request for :

http://www.acme.com/static/js/main.js

will result in aiCache attempting to return back content of a file located at

/var/www.acme.com/static/js/main.js

Likewise, request for :

http://www.acme.com/static/images/news.png

will result in aiCache attempting to return back content of a file located at

/var/www.acme.com/static/images/news.png

As you can see, aiCache simply appends the URL path of the request to the directory specified by

file_doc_root setting and then it attempts to read in the file at that location. Should a file be found at the

aiCache V 6.291

 User Guide
www.aiCache.com

160

Get your life backÊ
É 2001-2013 aiCache, Inc .

specified path, it's content is returned as result. If a file cannot opened (non-existing file or file with permissions

issues), a 404 "Not Found" response is returned instead.

aiCache will cache the content as per specified pattern TTL. Please note that for aiCache to serve content

off file system, the pattern must specify non-zero TTL. Requiring caching of file-based responses is done to

avoid excessive file system IO.

The URL query, if any, is ignored when constructing the file path, but it is still both used as part of

response cache signature and logged.

aiCache has simple logic to establish Content-Type response header for such file system content. It

understands and sets proper Content-Type for files with the following extensions: .htm, .html, .css, .js, .xml,

.flv, .gif, .jpg, .png, .tiff.

You can also specify the Content-Type value right at the pattern level by setting file_content_type, for

example:

website

hostname www.acme.com

file_doc_root /var/www.acme.com

....

pattern /static/blah 30m

filesystem

file_content_type text/blah

aiCache will optionally compress the content of the file, before returning it to the requesting agent, using

the regular content-compression logic (see dedicated chapter for more information on aiCache on-the-fly

compression).

The static file injection could be used for a variety of reasons. For example, you might need to serve certain

content in response to certain URLs, but you don't have access to the origin servers to install the required files

there. Or simply don't have time or desire to propagate a number of files across a number of origin servers. No

matter the reason, there's an easy way to have aiCache serve these files for you.

Remember that aiCache, when running, assumes identity of a non-root user (as specified by username

global-level setting). Make sure the file_doc_root directory and all files in it are accessible to the aiCache user -

typically requiring "rx" flags set on all of the directories and sub-directories and "r" flags set on all of the files

you want to serve to users.

aiCache V 6.291

 User Guide
www.aiCache.com

161

Get your life backÊ
É 2001-2013 aiCache, Inc .

Configuring HTTPS.

Introduction.

You can configure aiCache to perform HTTPS traffic encryption. When acting in this fashion, aiCache

maintains HTTPS communications between itself and clients, while optionally forwarding requests in clear

(HTTP) to origin servers. This way you get to have your cake and eat it too: you protect the information while

in transit, yet you relieve your origin servers from having to deal with HTTPS overhead. Of course, you can

also have a more traditional configuration when aiCache accesses origin servers over HTTPS.

With reasonably fast hardware dedicated to aiCache servers, you can expect very high HTTPS session

establishment and bulk encryption rates from aiCache. For example , 8 threaded aiCache running on 8-core Intel

Nehalem server, can accomplish over 15,000 RSA-1024 key signs/sec, 25,000 key verify/sec. Same

configuration is capable of driving around 1.5Gbps of traffic in 3DES or AES-256 encryption mode, certainly

more than adequate numbers for even higher volumes of HTTPS traffic.

aiCache requires OpenSSL shared library (libssl and libcrypto) to be installed on server. As of late 2009,

the current OpenSSL version is 0.9.8. Chances are these libraries are already installed on your server, as part of

standard Linux install. If you don't know where these reside, you can look for them via:

find / - name 'libssl*.so'

Should these libraries be found in non-standard location, you should add that directory to the

LD_LIBRARY_PATH before starting aiCache. Alternatively you can copy these or symlink to these from a

more standard libraries location, such as /usr/local/lib .

aiCache doesn't carry within itself or distribute any of OpenSSL source or binary code. However, should

you need to acquaint yourself with OpenSSL license, it can be found at the following location:

http://www.openssl.org/source/license.html .

Please also note that we also offer a non-HTTPS aiCache binary - you can use it when you don't require

HTTPS support and don't have OpenSSL libraries available on the aiCache servers.

In this Guide, we use HTTPS and SSL interchangeably, to refer to protected/encrypted connections ï as

opposed to HTTP connections, that happen without any encryption applied to the data.

aiCache V 6.291

 User Guide
www.aiCache.com

162

Get your life backÊ
É 2001-2013 aiCache, Inc .

Obtaining an HTTPS certificate.

While covering just how HTTPS operates in establishing trusted communications between a client browser

and a Web server, is well outside of scope of this manual, we shall provide a very brief introduction on the

subject.

For a client browser to trust a web site, the site must have applied for and acquired, a digital ID of sorts - a

so called HTTPS certificate. Much like your local government agency can issue you some form of ID that you

can then present to others to prove your identity, so can a trusted Internet "agency" of sort issue a digital ID

certificate to your web site.

To obtain such digital certificate, you need to generate a request and file it with an established Certificate

Authority, such as Verisign, Thawte, GeoTrust, Network Solutions etc. The request generation can be

accomplished using your own installation of OpenSSL toolkit - it comes with tools necessary for certificate

generation.

A modest fee is normally levied for HTTPS certificate issuance.

Upon receiving of signed certificate from Certificate Authority, you tell aiCache where to find it and for

what web site to present it to user browsers. All common web browsers come preconfigured with Certificate

Authority information. In other words, when aiCache presents to the web browser, the certificate you've

received from an established Certificate Authority, browser will know that certificate is signed by an

established and trusted authority and will allow establishment of encrypted HTTPS connection, along with

displaying of proper trusted HTTPS indicator to the user.

As part of establishing of HTTPS connection, another piece of information will be required - a file with

your web site's private key. Through some key exchange magic - using your site's private key (which you never

disclose or share with anybody) and your site's signed certificate (which, within itself, contains your site's

public key), aiCache and browser will choose a secret encryption key that will be then used to encrypt the

actual data, for certain duration of time and certain amount of data. Periodically, browser and aiCache might

decide to re-negotiate a new secret encryption key, to make the communication even more secure.

Here's an excellent on-line resource explaining how to generate both private key and a certificate request:

http://sial.org/howto/openssl/csr/ .

Self-signed HTTPS certificate.

Some sites might find acceptable to deal with inconvenience of self-signed certificate or you might want to

configure one for testing purposes. With such self-signed certificates, instead of asking an established and

inherently trusted Certificate Authority to issue your site an official ID, you issue your own.

When aiCache (or any other web server) presents such self-signed certificate to your site's visitors, the

user's browser will immediately alert that the certificate is not signed by a known certificate authority. A dialog

will be presented, letting users to accept your self-signed certificate and continue the access to your site or to

abandon the connection.

aiCache V 6.291

 User Guide
www.aiCache.com

163

Get your life backÊ
É 2001-2013 aiCache, Inc .

Most users on the Internet will opt to abandon the connection, so presenting such self-signed certificate is

not a good idea for a public site. However, for an Intranet site, you might notify your employees that they

should accept the self-signed certificate and you can certainly use such self-signed certificate for testing

purposes.

To create a self-signed certificate, just like with a request for an official certificate, you start by creating a

private key. For example, assuming your server has an OpenSSL toolkit installed, run:

openssl genrsa - out host.ke y 1024

Now you will have a private key, with key length of 1024, stored in a file called host.key. Please note that

key length of 1024 is considered to offer adequate protection, but do not use any shorter keys for production

sites.

Next, we generate a self-signed certificate:

openssl req - new - x509 - nodes - sha1 - days 365 - key host.key > host.cert

When prompted, provide required information. Should take you about a minute. Should you make a

mistake, simply re-run the openssl req command. Similarly, should you corrupt, misplace or remove the private

key file, you can regenerate that as well, using openssl genrsa command - but then you'd need to regenerate the

self-signed certificate as well.

That is it, we're done: our private key is in host.key file and our self-signed certificate is in host.cert file.

Now all you need to do is to configure aiCache HTTPS listen port, pointing to both the private key file and the

certificate file, along with a cipher list. We specify the following, in aiCache configuration file's global section:

listen https * 443 host.cert host.key AES256- SHA:RC4- MD5

Now, when a client browser makes an HTTPS connection to port 443 on any IP on aiCache server, aiCache

will present the self-signed certificate to the browser. Should user then accept the certificate through the

certificate dialog, an HTTPS connection will be established.

Making sense of certificate file content.

The content of certificate file is normally not human-readable due to being encoded. Two different

encodings are commonly used for certificate file: PEM (thatôs what aiCache requires) and DER (it can be

converted to PEM, but we advise getting PEM-encoded certificates).

Looking at PEM-encoded certificate, it is impossible to tell whatôs inside. Thankfully, thereôre a number of

sites that you can use to decode content of a certificate file. Hereôs a good one you can use:

http://www.sslshopper.com/certificate-decoder.html . OpenSSL toolkit can also be used, via command line

interface, to decode a certificate file ï google for instructions. You might need to decipher the certificate if

youôre not sure whatôs inside ï as in who is the certificate for, what CA has issued it, what is the expiration date

etc.

http://www.sslshopper.com/certificate-decoder.html

